
Reinforcement Learning

▪ Basic idea:
▪ Receive feedback in the form of rewards

▪ Agent’s utility is defined by the reward function

▪ Must (learn to) act so as to maximize expected rewards

▪ All learning is based on observed samples of outcomes!

Environment

Agent

Actions: a
State: s

Reward: r



The Arcade Learning Environment

2









Why Reinforcement Learning?

▪ Takes inspiration from nature

▪ Often easier to encode a task as a sparse reward (e.g. recognize if 
goal is achieved) but hard to hand-code how to act so reward is 
maximized (e.g. Go)

▪ General purpose AI framework



When might RL be a good tool for your problem?



When might RL be a good tool for your problem?

▪ Is your problem a sequential decision making problem?

▪ Are there “actions” that effect the next “state”?

▪ Do you know the rules of these effects?

▪ Can you write down a clear objective/score/reward/cost?

▪ Do you have a simulator? 

▪ Lots of examples of sequences of decisions and their long-term 
consequences?

▪ Is it unclear what to do in each state? Exploration required?

▪ Are you looking for unique/creative/super-human solutions?



When might RL not be a good tool?



When might RL not be a good tool?

▪ Single step or static problem

▪ No clear reward signal.

▪ Reward signal is unavailable or very hard to write down.

▪ Well-known model of the environment.

▪ Deterministic environment

▪ Low-tolerance for exploration and trial and error

▪ No need for adaptive or novel solutions. The goal is to perform 
the task in a very predictable way.



Temporal Difference Learning

▪ Big idea: learn from every experience!
▪ Update V(s) each time we experience a transition (s, a, s’, r)

▪ Likely outcomes s’ will contribute updates more often

▪ Temporal difference learning of values
▪ Policy still fixed, still doing evaluation!

▪ Move values toward value of whatever successor occurs: running average

(s)

s

s, (s)

s’

Sample of V(s):

Update to V(s):

Same update:



Q-Learning

▪ Q-Learning: sample-based Q-value iteration

▪ Learn Q(s,a) values as you go

▪ Receive a sample (s,a,s’,r)

▪ Consider your old estimate:

▪ Consider your new sample estimate:

▪ Incorporate the new estimate into a running average:

𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼(𝑠𝑎𝑚𝑝𝑙𝑒 − 𝑄 𝑠, 𝑎 )



Deep RL Makes a Big Splash!

13



14



The Arcade Learning Environment

15





17



Homework 4

▪ Q-Learning!

▪ DQN!



Lots of Advanced Exploration Strategies

Great blog article: https://lilianweng.github.io/posts/2020-06-07-exploration-drl/



DQN only works for discrete action spaces

▪ Next: How to deal with continuous action spaces


	Slide 1: Reinforcement Learning
	Slide 2: The Arcade Learning Environment
	Slide 3
	Slide 4
	Slide 5
	Slide 6: Why Reinforcement Learning?
	Slide 7: When might RL be a good tool for your problem?
	Slide 8: When might RL be a good tool for your problem?
	Slide 9: When might RL not be a good tool?
	Slide 10: When might RL not be a good tool?
	Slide 11: Temporal Difference Learning
	Slide 12: Q-Learning
	Slide 13: Deep RL Makes a Big Splash!
	Slide 14
	Slide 15: The Arcade Learning Environment
	Slide 16
	Slide 17
	Slide 18: Homework 4
	Slide 19: Lots of Advanced Exploration Strategies
	Slide 20: DQN only works for discrete action spaces

