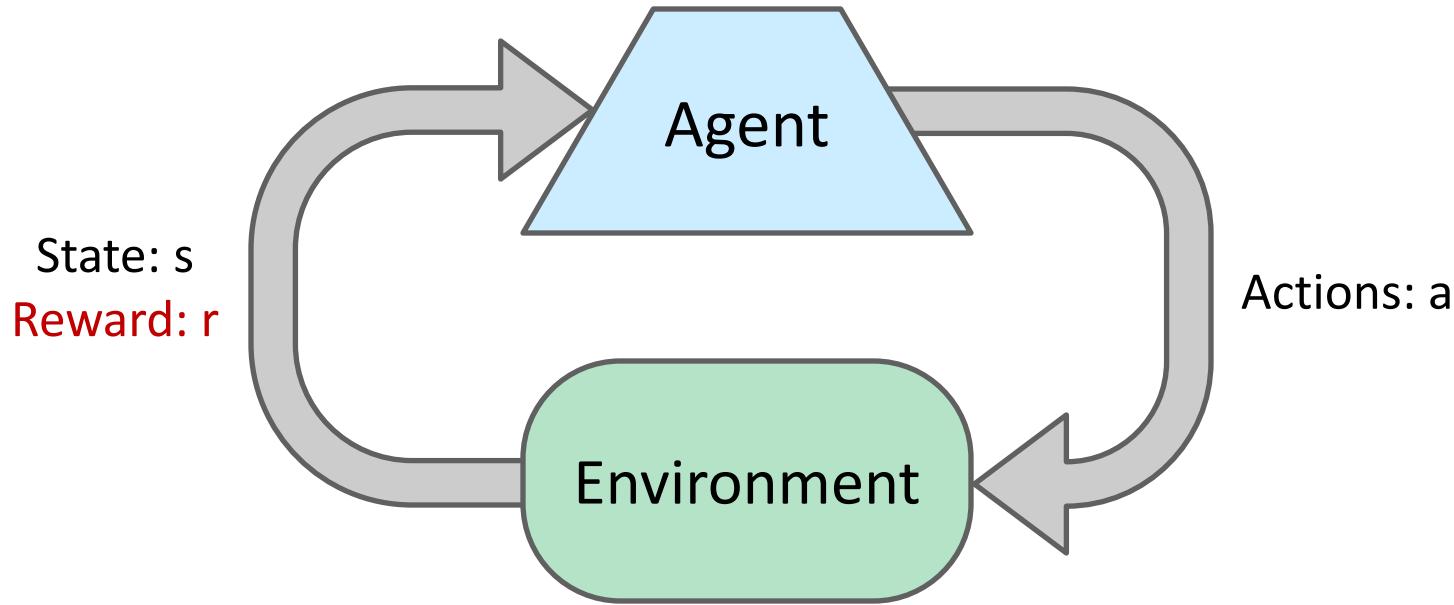
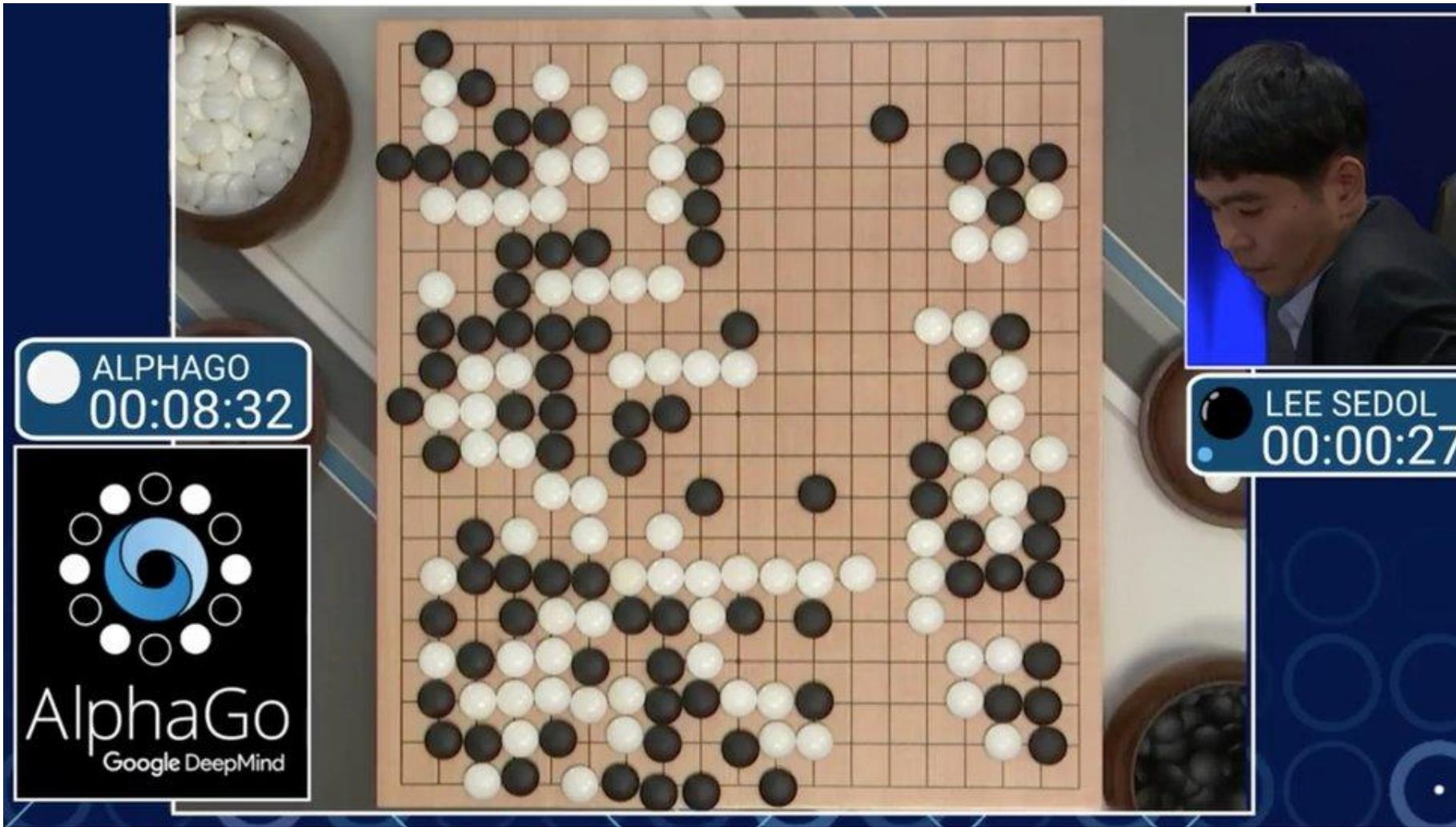


Reinforcement Learning



- Basic idea:
 - Receive feedback in the form of **rewards**
 - Agent's utility is defined by the reward function
 - Must (learn to) act so as to **maximize expected rewards**
 - All learning is based on observed samples of outcomes!

The Arcade Learning Environment



021 3 1

ChatGPT

Why Reinforcement Learning?

- Takes inspiration from nature
- Often easier to encode a task as a sparse reward (e.g. recognize if goal is achieved) but hard to hand-code how to act so reward is maximized (e.g. Go)
- General purpose AI framework

When might RL be a good tool for your problem?

When might RL be a good tool for your problem?

- Is your problem a sequential decision making problem?
- Are there “actions” that effect the next “state”?
- Do you know the rules of these effects?
- Can you write down a clear objective/score/reward/cost?
- Do you have a simulator?
- Lots of examples of sequences of decisions and their long-term consequences?
- Is it unclear what to do in each state? Exploration required?
- Are you looking for unique/creative/super-human solutions?

When might RL not be a good tool?

When might RL not be a good tool?

- Single step or static problem
- No clear reward signal.
- Reward signal is unavailable or very hard to write down.
- Well-known model of the environment.
- Deterministic environment
- Low-tolerance for exploration and trial and error
- No need for adaptive or novel solutions. The goal is to perform the task in a very predictable way.

Temporal Difference Learning

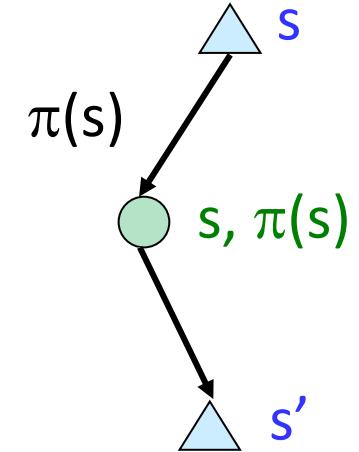
- Big idea: learn from every experience!
 - Update $V(s)$ each time we experience a transition (s, a, s', r)
 - Likely outcomes s' will contribute updates more often

- Temporal difference learning of values
 - Policy still fixed, still doing evaluation!
 - Move values toward value of whatever successor occurs: running average

Sample of $V(s)$: $sample = R(s, \pi(s), s') + \gamma V^\pi(s')$

Update to $V(s)$: $V^\pi(s) \leftarrow (1 - \alpha)V^\pi(s) + (\alpha)sample$

Same update: $V^\pi(s) \leftarrow V^\pi(s) + \alpha(sample - V^\pi(s))$



Q-Learning

- Q-Learning: sample-based Q-value iteration

$$Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]$$

- Learn Q(s,a) values as you go

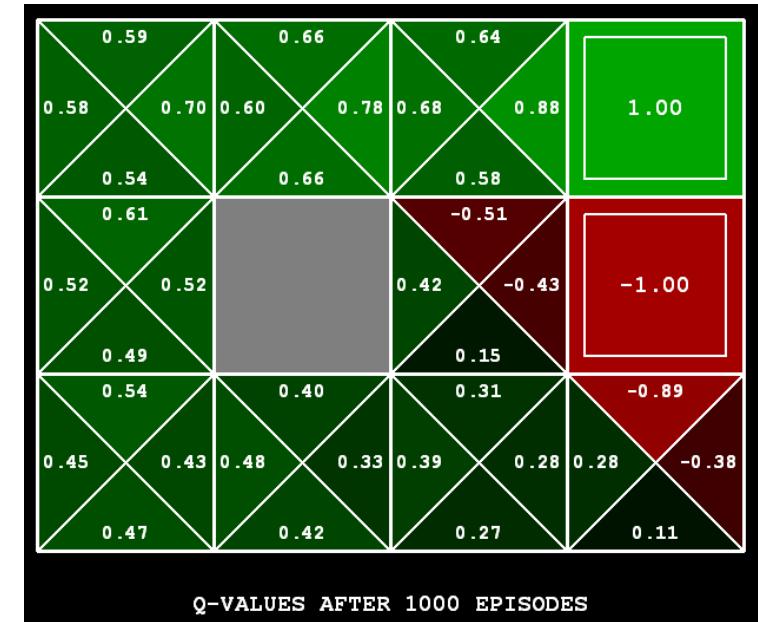
- Receive a sample (s, a, s', r)
- Consider your old estimate: $Q(s, a)$
- Consider your new sample estimate:

$$\text{sample} = R(s, a, s') + \gamma \max_{a'} Q(s', a')$$

- Incorporate the new estimate into a running average:

$$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha) [\text{sample}]$$

$$Q(s, a) \leftarrow Q(s, a) + \alpha(\text{sample} - Q(s, a))$$



Deep RL Makes a Big Splash!

nature

Explore content ▾

About the journal ▾

Publish with us ▾

Subscribe

[nature](#) > [letters](#) > [article](#)

Published: 25 February 2015

Human-level control through deep reinforcement learning

[Volodymyr Mnih](#), [Koray Kavukcuoglu](#)✉, [David Silver](#), [Andrei A. Rusu](#), [Joel Veness](#), [Marc G. Bellemare](#),
[Alex Graves](#), [Martin Riedmiller](#), [Andreas K. Fidjeland](#), [Georg Ostrovski](#), [Stig Petersen](#), [Charles Beattie](#), [Amir
Sadik](#), [Ioannis Antonoglou](#), [Helen King](#), [Dharshan Kumaran](#), [Daan Wierstra](#), [Shane Legg](#) & [Demis Hassabis](#)
✉

[Login](#)[Search !\[\]\(869f8db8cb6058a4d20fc99f4521bf06_img.jpg\)](#)[TechCrunch+](#)[Startups](#)[Venture](#)[Security](#)[AI](#)[Crypto](#)[Apps](#)[Events](#)[Startup Battlefield](#)[More](#)[Startups](#)

Google Acquires Artificial Intelligence Startup DeepMind For More Than \$500M

Catherine Shu [@catherineshu](#) / 6:20 PM MST • January 26, 2014

 Comment

TechCrunch
Early Stage

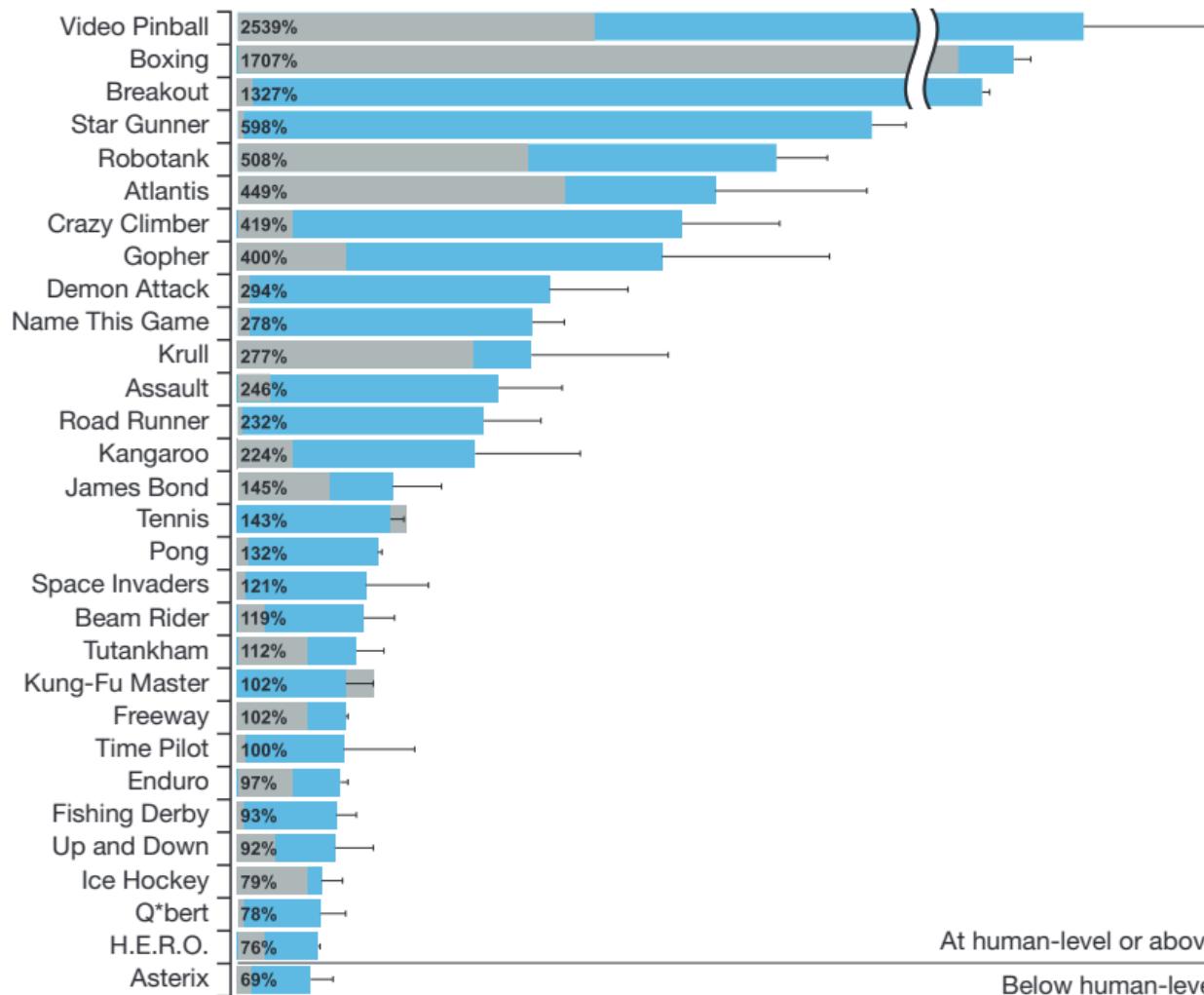
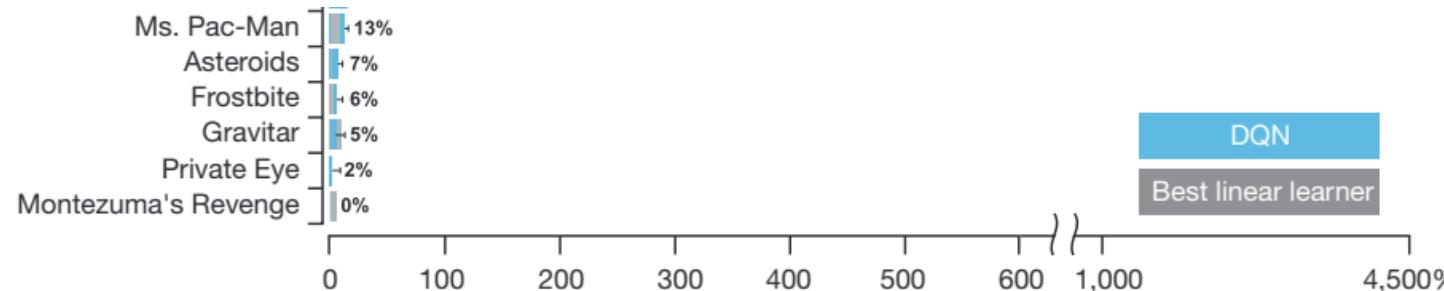
Regi

New users only. Valid for
subscription price after trial.

YouTube TV

The Arcade Learning Environment

021 3 1



Homework 4

- Q-Learning!
- DQN!

Tutorials > Reinforcement Learning (DQN) Tutorial Shortcuts

[Run in Google Colab](#) [Download Notebook](#) [View on GitHub](#)

Reinforcement Learning (DQN) Tutorial

Created On: Mar 24, 2017 | Last Updated: Jun 18, 2024 | Last Verified: Nov 05, 2024

Author: Adam Paszke
Mark Towers

This tutorial shows how to use PyTorch to train a Deep Q Learning (DQN) agent on the CartPole-v1 task from [Gymnasium](#).

You might find it helpful to read the original [Deep Q Learning \(DQN\)](#) paper

Task

The agent has to decide between two actions - moving the cart left or right - so that the pole attached to it stays upright. You can find more information about the environment and other more challenging

9:13 PM 2/11/2025

Lots of Advanced Exploration Strategies

Unifying Count-Based Exploration and Intrinsic Motivation

Marc G. Bellemare
bellemare@google.com

Sriram Srinivasan
srsrinivasan@google.com

Georg Ostrovski
ostrovski@google.com

Tom Schaul
schaul@google.com

David Saxton
saxton@google.com

Rémi Munos
munos@google.com

Google DeepMind
London, United Kingdom

INCENTIVIZING EXPLORATION IN REINFORCEMENT LEARNING WITH DEEP PREDICTIVE MODELS

Bradly C. Stadie
Department of Statistics
University of California, Berkeley
Berkeley, CA 94720
bstadie@berkeley.edu

Sergey Levine **Pieter Abbeel**
EECS Department
University of California, Berkeley
Berkeley, CA 94720
{svlevine, pabbeel}@cs.berkeley.edu

EXPLORATION BY RANDOM NETWORK DISTILLATION

Yuri Burda*
OpenAI

Harrison Edwards*
OpenAI

Amos Storkey
Univ. of Edinburgh

Oleg Klimov
OpenAI

Great blog article: <https://lilianweng.github.io/posts/2020-06-07-exploration-drl/>

DQN only works for discrete action spaces

- Next: How to deal with continuous action spaces

