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What is the goal of RL?

" Find a policy that maximizes expected utility (discounted
cumulative rewards)

m* = argmax E,, E v'R(s,m(s),s")
T
Lt=0



Two approaches to model-free RL

= | earn Q-values

" Trains Q-values to be consistent. Not directly optimizing for
performance.

= Use an objective based on the Bellman Equation

Qt1(s,a) « S T(s,a,8) | R(s,a,8) +7 maxQu(s,a)

= Learn Policy Directly
" Have a parameterized policy mg

» Update the parameters 6 to optimize performance of policy.
6



Policy Search




Preliminaries

Trajectory (rollout, episode) T = (sg, ag, S1, A1, -+ )
" So ~ Po(*), Ser1 ~ P(|se ae)
Rewards 1 = R(S¢, Aty Sgq1)

Finite-horizon undiscounted return of a trajectory
T

R(T) = Zrt

t=0
Actions are sampled from a parameterized policy g
ar ~ g (- |St)




Preliminaries

= Probability of a trajectory (rollout, episode) T = (sg, ag, S1, A1, -+ )
T—1
P(t|m) = po(so) np(5t+1|5t» ac)mg(az|se)
t=0
= Expected Return of a policy J(m)

J(m) = ) P(elm) R(x) = Byl R(D)

" Goal of RL: Solve the following optimization problem
n" = argmax J (1)
T



How should we parameterize our policy?

= We need to be able to do two things:
» Sample actions a; ~ g (- |S¢)
= Compute log probabilities log g (a;|s;)
= Categorical (classifier over discrete actions)

» Typically, you output a value x; for each action (class) and then the
probability is given by a softmax equation

®
AT AN
\ ‘

%

\ "’"f’ WO AN 4

°$\\;’2,Z://‘\\‘ Q%\\‘“ O
K\ V”;

»“:“'&’ﬁn )

Xo o (als) = exp(x;)
PRI T Y exp(x;)

S0 S n e

/ XN ,,4‘.\\\'//%{'}“&.
Wallalava

\.A./'.




How should we parameterize our policy?

= Diagonal Gaussian (distribution over continuous actions)
a~NwZx) -
where X has non-zero elements only on the diagonal.

Thus, an action can be sampled as .
a = p(s) + 04(s)Oz, z ~N(0,I)
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Goal: Update Policy via Gradient Ascent

= We have a parameterized policy and we want to update it so that
it maximizes the expected return.

" We want to find the gradient of the return with respect to the
policy parameters and step in that direction.

Or+1 < Ok + aVy/(my) .
k

Policy gradient
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Fact #1

" Probability of a trajectory:

* The probability of a trajectory T = (g, ag, ... ST+1) given that actions
come from 1y is

T
P(tlm) = po(so) 1_[ P(s¢t1lse, ag)mg(ag|se)
t=0

13



Fact #2

" | og-probability of a trajectory:

* The log-probability of a trajectory T = (s, ag, ... S7+1) given that
actions come from 1y is

N

T
log P(z|m) = log | po(so) I_IP(St+1|Str a.)mg(az|se)
t=0

= log po(Sop)
T

+ Z(log P(s¢+1lse ae) + log mg(ae|se))
t=0



Fact #3

" Grad-Log-Prob of a Trajectory
=" Note that gradients of everything that doesn’t depend on 8 is O.

T
Vg log P(7|6) = VW"‘ Z(Ve lo 7115t ) + Vg log mg (ac|st))
t=0

T
= Z(vg log g (a|st))
t=0



" Log-Derivative Trick:

Fact #4 S o
o . gg\f 9\03&(% ) Q(>(3 0

» This is based on the rule from calculus that the derivative of log x is 1/x

VoP(t|m) = P(t|m)VglogP(7|6)

dl 1 d dl d
. 0ogg(x) = g(x)dxg(x) = g(x)—-logg(x) = dxg(x)



Derivation of Policy Gradient

Vol (1g) = VL7 rm, [R(7)]
Try it!



Derivation of Policy Gradient

Vol (g) = VgErr, [R(T)]
= Vg 2 P(7|0)R(7)
= 2. VoP(7|0)R(7)
= 2 P(7|0)Vy log P(z|6) R(7) Fact #4
= E7r,[Vg log P(z]6) R(7)]

— Er~ng[ g=0 Volog g (ac|s:) R(T)] Fact#3



The Policy Gradient (REINFORCE)

" We can now perform gradient ascent to improve our policy!

. |
QLY Velte) = Eeer, Zve log 19 (aclse) R(®)

Estimate with a

sample mean over a sz loo e (a.ls.) R(t
set D of policy rollouts |D| o logmg(acls,) R(7)
given current TED t=

parameters




The Policy Gradient (REINFORCE)

" We can now perform gradient ascent to improve our policy!

Or+1 < Ok +aVy/ () ‘

o) (o) % 7o sze log g (aclse) R(x)

TED t=

Walit, doesn'’t this remind you of something else?



What does the log probability look like?

-

" logmg(als) =7

(H — H) https://en.wikipedia.org/wiki/Normal_distribution

1
o als) = = o (-5

vl |
%ﬂg mp(als) = — % |1ﬂg(2}m£) + (a ;2’”)3_]
o

21


https://en.wikipedia.org/wiki/Normal_distribution

Some more intuition (thanks to Andrej Karpathy)

» Blue Dots: samples from Gaussian :
- Blue arrows: gradients of the log * We score each sample * To update the Gaussian mean

probability with respect to the * Red have score -1 parameter, we average up all the

gaussian's mean parameter « Green have scores +1 green arrows, and the negative of
the red arrows.

samples x and
Vg log p(x)
for the mea

after a parameter update

Samples from this distribution will have a
higher expected score, as desired.

T
o Vo) (6) = Erny | ) Vo log mo(arlse) R(7)
https://karpathy.github.io/2016/05/31/rl/ i



How would you implement this?

1. Start with random policy parameters 6,

. Run the policy in the environment to collect N rollouts
(episodes) of length T and save returns of each trajectory.
ar ~ e (- Ist) = (S0, Ao, 70, S1, A1, T4y w0 s 1y ST41)

D ={tq,..Tn}, R = {R(11),...R(ty)}

. Compute policy gradient

(T
Vo] (tg) = Erop, 2 Vg log mg(at|s:) R(7)
. Update policy parameters =0

Or+1 < Ok + aVy(715) ‘9
k
. Repeat from step 2




Simple Pytorch Pseudocode

for episode in range(num_episodes):
state = env.reset()
trajectory =[]

# Compute returns and policy loss

log_probs, rewards = zip(*trajectory)

returns = compute_returns(rewards, gamma)
policy loss = -sum(log_prob * G

while True: for | 6. G in ziofl b {
action, log_prob = select_action(policy net, state) or log_prob, G in zip(log_probs, retums))
next_state, reward, done, _ = env.step(action)

# Update policy network
optimizer.zero_grad()
policy loss.backward()
optimizer.step()

trajectory.append((log_prob, reward))
state = next_state

if done:
break

24



Policy Gradient RL Algorithms

= We can directly update the policy to achieve high reward.

" Pros:
" Directly optimize what we care about: Utility!
= Naturally handles continuous action spaces!
" Can learn specific probabilities for taking actions.
» Often more stable than value-based methods (e.g. DQN).

= Cons:

" On-Policy -> Sample-inefficient we need to collect a large set of new
trajectories every time the policy parameters change.

" Q-Learning methods are usually more data efficient since they can reuse
data from any policy (Off-Policy) and can update per sample.



Many forms of policy gradients

- 7 _
VoJ(mp) = TETH Z Vg log ma(at|s:) P
_t=0 |
o T

What we derived: (I)t — R(T):, g(e)ll,lis\;\ﬁoi:&m”ar ¢, = Z R(St’; a, 5t’+1)p

b=

https://medium.com/@thechrisyoon/deriving-policy-
gradients-and-implementing-reinforce-f887949bd63

" What is better about the second approach?
" Focuses on rewards in the future!
" Less variance -> less noisy gradients.
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Many forms of policy gradients

-7 -
VQJ(’PTQ) — Tﬁ]??m Z V@ log ﬂ_ﬂ(at|3t)(1)t
| t=0 |
L Looks familiar....
q)t f— ZR(St’;a’t’:St’qu); (I)t _ Qﬂg(staat)

Y=

= Now we have an approach that combines a parameterized policy
and a parameterized value function!



Baselines

T
Vo) (0) = Evorg | ) Vologmo(acls) R@| -
t=0 |

T
1
~ mz 2 Vg logmg(a¢|s:) R(7)

TED t=0




Baselines

Vo (6) = 5 > Vologpe(r)lr(r) 1

1 is”
h— ﬁ Z ?"(T) But can we do this?

E[Vglogpg(T)b] = /Pa(’r)ve logpg(T)bdT

= /Vgpg('r)bd'r = bVy /pg('r)d'r =bVyl =0




Many forms of policy gradients

T
V()J(TTQ) = E Z V@ log ’J’T()([It|8t)(1)t

T~TH

T
®, = R(7), Oy =Y R(sy,ap, sp41), &, = Q™ (sy, ar)

H—t

T
D, = Z R(sy,ap, spv1) — b(st)

t'=t

O, = A" (8¢, a1) = Q7 (8¢, a:) — V7™ (s4)

Advantage Function



I rotate
the piece

Really bad
action

Critic



fit V]

fit a model to
ﬁ estimate return
generate

samples (i.e.
run the policy)

‘ improve the
policy

0« 0+ aVeJ(0)

NS




Actor Critic Algorithms

= Combining value learning with direct policy learning
" One example is policy gradient using the advantage function

Valu

Function

[T
Vo) () = Erony | ) Vologmg(arls,) Qi (se, ar)

=0

state action

reward 5 — (rt - '}/Q:AT]H (St+1’at+1) _ QZAT;Q (StJ at))

4[ Environment }~ T 0
Wit1 < Wi + a0:VgQ,




Q Actor Critic Algorithm Pseudo Code

Algorithm 1 Q) Actor Critic

Initialize parameters s, 0, w and learning rates ag, a,,; sample a ~ mg(als).
fort=1...T: do
Sample reward r; ~ R(s,a) and next state s’ ~ P(s'|s, a)
Then sample the next action a’ ~ mg(a’|s’)
Update the policy parameters: 6 < 0+ apQ (s, a)Vglogmg(als); Compute
the correction (TD error) for action-value at time t:
Ot =1t +YQuw(s',a") — Qu(s, a)
and use it to update the parameters of () function:
W 4— W + Q0 Vo Qo (8, a)
Move to a <+ a’ and s < &
end for

Adapted from Lilian Weng’s post “Policy Gradient algorithms”



The Advantage Function

A(s,a) = Q(s,a) — V(s)

g value for action a average
in state s value
of that
state
= Why good?

= Why bad?



Temporal Difference Learning

= Bigidea: learn from every experience!
= Update V(s) each time we experience a transition (s, a, s’, r)
= Likely outcomes s’ will contribute updates more often

* Temporal difference learning of values
= Policy still fixed, still doing evaluation!
= Move values toward value of whatever successor occurs: running average

Sample of V(s): sample = R(s,m(s),s) +~4V™(s")

Updateto V(s): V7 (s) + V7(s) 4+ a(sample — V™(s))




The Advantage Function

A(s,a) = Q(Is, a)l— V(s)
r—+ 7|V(3')
A(s,a) =r+~V(s') — V(s)

TD Error




Advantage Actor Critic (A2C)

= Combining value learning with direct policy learning
" One example is policy gradient using the advantage function

T
VoJ(mg) = TEM Z Vo log mg(as|s:) Dy TD-Learning update
= Wis1 < W +ad/V, V(s a;w)

O, = A" (s8¢, a1) = Q™ (s¢,ar) — V™ (sy)

TD error 6; = (s, a;) + yV™(Serq) — VT(St)
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Asynchronous Advantage Actor Critic (A3C)

Asynchronous Methods for Deep Reinforcement Learning

Volodymyr Mnih! VMNIH @ GOOGLE.COM
Adria Puigdoménech Badia’ ADRIAP@ GOOGLE.COM
Mehdi Mirza'* MIRZAMOM @IRO.UMONTREAL.CA
Alex Graves' GRAVESA @ GOOGLE.COM
Tim Harley' THARLEY @ GOOGLE.COM
Timothy P. Lillicrap' COUNTZERO @ GOOGLE.COM
David Silver! DAVIDSILVER @ GOOGLE.COM
Koray Kavukcuoglu ! KORAYK @ GOOGLE.COM

! Google DeepMind
2 Montreal Institute for Learning Algorithms (MILA), University of Montreal
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Asynchronous Advantage Actor Critic (A3C)

= Adds a few tricks

1. Multiple parallel workers to collect rollouts in different
copies of the same env and update the global policy and value
models asynchronously

2. n-step returns
3. Entropy regularization
4. Share neural network weights for actor and critic

41



Parallel actors

online actor-critic algorithm:

=» 1. take action a ~ my(als), get (s,a,s’,r)

2. update IA/QZI using target r + 'yf/?”(s’) - works best with a batch (e.g., parallel workers)
3. evaluate A™(s,a) = r(s, aA) + wgy/— 5 (s)
4. Vo J(0) =~ Vglogmy(als)A™ (s, a)

5.0+ 0+ aVyJ(0)

synchronized parallel actor-critic asynchronous parallel actor-critic

get s, a8, ) 0}

update 0 + Bt =

get (s,a,s’,r)«—l I l '

update 0 + Bl

NN I 't




N-Step Returns

= At convergence we want V™ (s;) = E_[ry + YV ™(S¢41)]

= So given experience (S¢, s, T, St+1), TD methods push
V™ (s;) towards ry + yV™(S;41)

= But why only look one step ahead? [1-step return]

" |n practice we have experience that looks like this
(S0, Ap, 70, S1,S2, A2, T, 83, uuy St A, Ty Spqy wee )
What if we pushed V™ (s,) towards 1y + y7roq + Y2V (Sp45)?
Or even pushed V™ (s,) towards 1. + y1p41 + Y742 + ¥V (Sp43)?

We can generalize this idea to use n-step returns!



N-Step Returns for A3C updates

Given (Sg, Qg, 79, S1, A1, 71, S, «ee» St) A, Ty St 1y o T'T7—1, ST)

Compute advantage for each state. If s; is a terminal state, then define VF(s;)=0
T—t—1

A(sy, ap) = z V1w + ¥ T (sp) — Vi (se)
=0
Accumulate gradients for each state and update policy using policy gradient

Vg logmg(a;lse) Ay (St ar)

Update Value function based on TD-error using MSE loss

_ . 2
7( 7, Yireas + ¥ (sr) — v’f(st))




Shannon Entropy

= Average level of uncertainty associated with a random variable’s

possible outcomes.
1 1
P(X = heads) = 5 P(X = tails) = 5

= - p(z)logp(x

reEX

0
0 20 40 60 80 100

Head (h) or Tails (t) probability (%)



Policy Entropy Bonus

" Improves exploration by discouraging premature convergence to
suboptimal deterministic policies.

1

|
P(X = heads) = 5 P(X = tails) = 5

H(r) = - m(a|s)logn(als)

Entropy

H(m) = —/ﬂ(a|3)lﬂgﬂ(a\5)d{1

20 40 60
Head (h) or Tails (t) probability (%)



Parameter Sharing

online actor-critic algorithm:
> 1. take action a ~ my(als), get (s,a,s’,r)
2. update I7q§: using target r + 71??”(5’ ) )
3. evaluate A™(s,a) = r(s, Et) +Vi(s") = Vi(s)
4. VoJ(0) = Vylogmg(als)A™ (s, a)
5.0« 0+ aVeJ(0)

two network design + simple & stable

- no shared features between actor & critic

shared network design
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