Advanced Behavioral Cloning
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Instructor: Daniel Brown



Implicit Behavioral Cloning

* Paper: https://arxiv.org/abs/2109.00137
* Video: https://www.youtube.com/watch?v=QsIGgRUSRzs



https://arxiv.org/abs/2109.00137
https://www.youtube.com/watch?v=QslGqRUSRzs




Action Chunking with Transformers (ACT)

e Paper: https://arxiv.org/pdf/2304.13705
* Videos: https://tonyzhaozh.github.io/aloha/



https://arxiv.org/pdf/2304.13705
https://tonyzhaozh.github.io/aloha/

Variational Autoencoders (VAESs)

e Autoencoders learn latent

representations
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Variational Autoencoders (VAESs)

e Autoencoders learn latent
representations

* VAEs map input into a ' | h
distribution over latent
variables z '} '}
Input Encoder Latent Decoder Output

Space

e Loss function is reconstruction
plus KL divergence

L = Ey: o) [log p(z]2)] — Dxr(g(z|z)||p(2))



Conditional Variational Autoencoders (CVAEs)
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condition on extra infoy
X > —I"_-"i"u_—>< ‘ — 1!
=z -
Input Encoder - Lateat - Decoder Output

Space

e Loss function is reconstruction
plus KL divergence

L = Eq(z12) log p(z|2, ’5_}_)] — DKL(G(ZM@)HP(Z@)



Transformers

e State of the art ways to ingest and output sequential data.
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Neural language modeling
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Neural language modeling
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Neural language modeling
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Neural language modeling

[BOS] Sylvester Stallone has —




the number of tokens in the vocabulary
N

the size of the
vector
representation
up to and ) X
including the
current
token N

representation(current token) output matrix

[BOS] Sylvester Stallone has

the logits vector

Read about other sampling strategies here: https://huggingface.co/blog/how-to-generate

“+” softmax

i-th dimension ~

the “probability” [not
really] that the next
token is the i-th token
in the vocabulary

select the token with
the high(est)
“probability” as a
token to display
(generate)


https://huggingface.co/blog/how-to-generate
https://huggingface.co/blog/how-to-generate
https://huggingface.co/blog/how-to-generate
https://huggingface.co/blog/how-to-generate
https://huggingface.co/blog/how-to-generate

Neural sequence modeling
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Problems:
 How do we deal with different length inputs?

« How do we model long-range dependencies?



Recurrent Neural Networks

e Standard RNN
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Perform dot product between query and all keys to get a raw score
for each previous word (including current word).
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Normalize these scores via a softmax to get a probability
distribution. Then return a weighted sum of the values.
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output token
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Diffusion Policy

* Paper: https://arxiv.org/pdf/2303.04137v4
* Videos: https://diffusion-policy.cs.columbia.edu/
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https://arxiv.org/pdf/2303.04137v4
https://diffusion-policy.cs.columbia.edu/
https://diffusion-policy.cs.columbia.edu/
https://diffusion-policy.cs.columbia.edu/

Denoising Diffusion (high-level

Fixed forward diffusion process

Generative reverse denoising process
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