Advanced Behavioral Cloning

gl ey Gradient Field
epresentation 1.0
: Rep 1;"-(_.: : ggtgg Y
i : v : AaZ V
: Scalar (Regression) : Implicit Policy [gfgion Policy 0.5 v ; : / : : : A A : ; i
Explicit Policy : A ,\"‘\ " a.rgmin(E) ’(a) ----- 200 :: vvvv;;;v :;v
¥ 7\ I a ! .0 =
1 / x P I B = 1l e | |7 -/ o\ Aa A ~AAAAAAAAAA AA
FH(O) : Mixture of Gaussians | _._qu_(_(?_,"a")j _?_:_0__(__(_)_’_?_)_ iter :::::;';v i
| : A A 0.5 54 “i 4422244/
) I ii AAA i
1 Categorical : @ @ .1_Q| @ i 4 ii A
e e m ey 1.0 -0.5 0.0 0.5 1.0 - -0.5 0.0 0.5 1.0
(a) Explicit Policy (b) Implicit Policy o (c) Diffusion Policy 0

Instructor: Daniel Brown

Implicit Behavioral Cloning

* Paper: https://arxiv.org/abs/2109.00137
* Video: https://www.youtube.com/watch?v=QsIGgRUSRzs

https://arxiv.org/abs/2109.00137
https://www.youtube.com/watch?v=QslGqRUSRzs

Action Chunking with Transformers (ACT)

e Paper: https://arxiv.org/pdf/2304.13705
* Videos: https://tonyzhaozh.github.io/aloha/

https://arxiv.org/pdf/2304.13705
https://tonyzhaozh.github.io/aloha/

Variational Autoencoders (VAESs)

e Autoencoders learn latent

representations

Latent

Input Encoder < Decoder
apace

Encoder (Latent Space) Decoder
|
| . \

o /Y
N i ’.
ey
o/ IpaN
T/ ')

Sa,

) A ../ /
. | .’\ h"
T & . / . \ 3
- Aa / N\~ \\
— <\ et
Bottleneck .:4

(encoded data)

Input data Reconstructed

Data

Variational Autoencoders (VAESs)

e Autoencoders learn latent
representations

* VAEs map input into a ' | h
distribution over latent
variables z '} '}
Input Encoder Latent Decoder Output

Space

e Loss function is reconstruction
plus KL divergence

L = Ey: o) [log p(z]2)] — Dxr(g(z|z)||p(2))

Conditional Variational Autoencoders (CVAEs)

* Encoder and decoder both j hV J Ny
condition on extra infoy
X > —I"_-"i"u_—>< ‘ — 1!
=z -
Input Encoder - Lateat - Decoder Output

Space

e Loss function is reconstruction
plus KL divergence

L = Eq(z12) log p(z|2, ’5_}_)] — DKL(G(ZM@)HP(Z@)

Transformers

e State of the art ways to ingest and output sequential data.

Output
Probabilities

Softmax

| Linear |

BERT o GPT

s | ™ | Add & Norm ;
> Add & Norm } Mult-Head
Feed Attention
Forward) Nx
Encoder = = Decoder
N Add & Norm
,—»[Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
At 2 At 2
T J U —)
Positional o) ¢ Positional
Encoding Encoding
Input Output
Embedding Embedding

I I

Inputs OQutputs

Neural language modeling

. — Sylvester

Neural language modeling

Ow .
O R
‘\‘.\‘\v'v‘ \"’ \. — Stallone
. ":‘::~on“ “q.

o\”“""J/
ROL02e

[BOS] Sylvester —

Neural language modeling

. .
.'
Q\‘.\b\"'t "”’\\. — has

. ":‘::~on“ ‘2.
7,
0\\.‘.‘\11

[BOS] Sylvester Stallone —

Neural language modeling

[BOS] Sylvester Stallone has —

the number of tokens in the vocabulary
N

the size of the
vector
representation
up to and) X
including the
current
token N

representation(current token) output matrix

[BOS] Sylvester Stallone has

the logits vector

Read about other sampling strategies here: https://huggingface.co/blog/how-to-generate

“+” softmax

i-th dimension ~

the “probability” [not
really] that the next
token is the i-th token
in the vocabulary

select the token with
the high(est)
“probability” as a
token to display
(generate)

https://huggingface.co/blog/how-to-generate
https://huggingface.co/blog/how-to-generate
https://huggingface.co/blog/how-to-generate
https://huggingface.co/blog/how-to-generate
https://huggingface.co/blog/how-to-generate

Neural sequence modeling

SRR

C
7=
SOROONC

— made

—_
[BOS] Sylvester Stallone has "g‘.::z?':“‘::&..““.
S ieisd

Problems:
 How do we deal with different length inputs?

« How do we model long-range dependencies?

Recurrent Neural Networks

e Standard RNN

>

) h)
; :
6 6

@—>—@

®)
:
b

)
!
A
I
®)

e Long short-term memory (LSTM) @ =
~ T\ s >
—>—® T
A Lebel A
) 7 i
&) (x) &)

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Output

Large Language Models

recite

the

law

f

%Transformer—Deooder

<s> robot must obey

1 2 3 4 4000

[DECODER BLOCK]1
[DECODER BLOCK)
..
(Feed Forward Neural Network)
(Masked Self-Attention)
e e s s s s EEEEEEE s e e e e e e e E e mm !)

- _J

' Token Positional

HEEN Embeddings Encodings

.| Positional encoding for token #1
+

Token embedding of <s>

1 2 1024

(" DECODER)

(Feed Forward Neural Network

_/

Masked Self-Attention
0.1% 30% 50% 0.2% 0.1% 0.03% 0.5% 0.2% 18%

a robot

[DECODER]
_ .,
<s> a robot must obey the orders given it

1 2 3 4 5 6 7 8 9 1024

Input

Embedding

Queries

Keys

Values

Thinking

X [

o [T

<« [T

vi]

Machines

X [

=[]

< [T

vo[[T

Perform dot product between query and all keys to get a raw score
for each previous word (including current word).

value #4
value #3
Query #9 value #2
@
value #1 o T
Af’%

Normalize these scores via a softmax to get a probability
distribution. Then return a weighted sum of the values.

value #4

value #3

Query #9 50% value #2

300/0 value #1

Word
<S>
a
robot
must
obey
the
orders
given
it

Value vector

HEEHEHEEE

Score
0.001
0.3
0.5
0.002
0.001
0.0003
0.005
0.002
0.19

Sum:

Value X Score

[TT1
[TT1]

[T 11
[TT1]

output token

Token probabilities (logits)
Embeddings
0.19850038 aardvark
0.7089803 aarhus
Decoder #12, Position #1 0.46333563 aaron Pick an output
output vector
token based on
EEEE X — its probability
(sample)
. = The
A -0.51006055 |zyzzyva
é)
[DECODER]
LN N]
[DECODER]
. J
<S>

1 2 e 1024

Nx
“Layers"

Positional
Encoding

Feed-Forward
Network

Multi-Headed
Self-Attention

Embeddings/
Projections

Source Sequence

T s -

|

Predictions

@;}'M

"

i

1

1

! | Feed-Forward
i Network
'

1

]

1

A

Masked
Multi-Headed
Self-Attention

Embeddings/
Projections

Shifted

Target Sequence

Nx
“Layers"

Paositional
Encoding

26

27

Diffusion Policy

* Paper: https://arxiv.org/pdf/2303.04137v4
* Videos: https://diffusion-policy.cs.columbia.edu/

28

https://arxiv.org/pdf/2303.04137v4
https://diffusion-policy.cs.columbia.edu/
https://diffusion-policy.cs.columbia.edu/
https://diffusion-policy.cs.columbia.edu/

Denoising Diffusion (high-level

Fixed forward diffusion process

Generative reverse denoising process

29

	Default Section
	Slide 1: Advanced Behavioral Cloning
	Slide 2: Implicit Behavioral Cloning
	Slide 3
	Slide 4: Action Chunking with Transformers (ACT)
	Slide 5: Variational Autoencoders (VAEs)
	Slide 6: Variational Autoencoders (VAEs)
	Slide 7: Conditional Variational Autoencoders (CVAEs)
	Slide 8: Transformers
	Slide 9: Neural language modeling
	Slide 10: Neural language modeling
	Slide 11: Neural language modeling
	Slide 12: Neural language modeling
	Slide 13
	Slide 14: Neural sequence modeling
	Slide 15: Recurrent Neural Networks
	Slide 16: Large Language Models
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22: Perform dot product between query and all keys to get a raw score for each previous word (including current word).
	Slide 23: Normalize these scores via a softmax to get a probability distribution. Then return a weighted sum of the values.
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Diffusion Policy
	Slide 29: Denoising Diffusion (high-level)

