
Behavioral Cloning and 
Interactive Imitation Learning

Instructor: Daniel Brown
[Some slides adapted from Sergey Levine (CS 285) and Alina Vereshchaka (CSE4/510)]
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Brief Machine Learning Refresher

There are roughly 3 main branches of machine learning

• Supervised Learning

• Unsupervised Learning

• Reinforcement Learning
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Supervised Learning

• Setting/Assumptions: In supervised learning, the model is trained on 
labeled data, where the input data is paired with the correct output 
(i.e., the "ground truth").

• Goal: To learn a mapping from inputs to outputs so that the model 
can predict the output for new, unseen inputs.

• Common Use Cases:
• Classification (e.g., spam email detection, image recognition).
• Regression (e.g., predicting house prices, stock market trends).

• Example models:
• Linear regression, decision trees, support vector machines, and neural 

networks.
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Multi-class Logistic Regression

▪ = special case of neural network
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Deep Neural Network = Also learn the features!
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g = nonlinear activation function



Classification
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PyTorch Example
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import torch.nn as nn

import torch.optim as optim

class ClassificationNetwork(nn.Module): 

     def __init__(self, input_dim, num_classes): 

          super(ClassificationNetwork, self).__init__() 

          self.fc = nn.Linear(input_dim, num_classes)

          

    

     def forward(self, x): 

          return self.fc(x) 

model = ClassificationNetwork(input_dim, num_classes) 

criterion = nn.CrossEntropyLoss() 

optimizer = optim.Adam(model.parameters(), lr=0.001) 

for epoch in range(num_epochs): 

     for inputs, labels in dataloader: 

          optimizer.zero_grad() 

          outputs = model(inputs)

          loss = criterion(outputs, labels) 

          loss.backward() 
          optimizer.step() 



PyTorch Example (MLP)
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import torch.nn as nn

import torch.optim as optim

class ClassificationNetwork(nn.Module): 

    def __init__(self, input_dim, num_classes): 

          super(ClassificationNetwork, self).__init__() 

          self.fc1 = nn.Linear(input_dim, num_hidden)

          self.relu = nn.ReLU()

          self.fc2 = nn.Linear(num_hidden, num_classes)

         

  def forward(self, x): 

          return self.fc2(self.relu(self.fc1(x))) 

model = ClassificationNetwork(input_dim, num_classes) 

criterion = nn.CrossEntropyLoss() 

optimizer = optim.Adam(model.parameters(), lr=0.001) 

for epoch in range(num_epochs): 

     for inputs, labels in dataloader: 

          optimizer.zero_grad() 

          outputs = model(inputs)

          loss = criterion(outputs, labels) 

          loss.backward() 
          optimizer.step() 



Deep Neural Networks for Regression
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Deep Neural Networks for Regression
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Regression
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PyTorch Example
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import torch.nn as nn

import torch.optim as optim

class ClassificationNetwork(nn.Module): 

     def __init__(self, input_dim, num_classes): 

          super(ClassificationNetwork, self).__init__() 

          self.fc = nn.Linear(input_dim, num_classes) 

    

     def forward(self, x): 

          return self.fc(x) 

model = ClassificationNetwork(input_dim, num_classes) 

criterion = nn.CrossEntropyLoss() 

optimizer = optim.Adam(model.parameters(), lr=0.001) 

for epoch in range(num_epochs): 

     for inputs, labels in dataloader: 

          optimizer.zero_grad() 

          outputs = model(inputs)

          loss = criterion(outputs, labels) 

          loss.backward() 
          optimizer.step() 



Reinforcement Learning

• Setting/Assumptions: Reinforcement learning (RL) involves training an 
agent to make decisions by interacting with an environment. The agent 
learns through trial and error (receiving rewards and penalties), optimizing 
its behavior to maximize cumulative rewards.

• Goal: To learn a policy that maps states of the environment to actions that 
achieve the highest reward.

• Common Use Cases:
• Game-playing AI (e.g., AlphaGo, chess-playing bots).
• Robotics (e.g., autonomous navigation).
• Dynamic resource allocation (e.g., in networking or traffic management).

• Examples:
• Q-learning, Deep Q-Networks (DQN), and Proximal Policy Optimization (PPO).
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Reinforcement Learning
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Reinforcement Learning
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Reward engineering is hard!
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Reward engineering is hard!
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Reward engineering is hard!
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Reinforcement learning is hard…even with a 
reward function!
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Imitation Learning (Learning from Demonstrations):
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• Often showing is easier than telling.
• Alleviates problem of exploration.

Learn a policy from examples of good behavior.



Behavioral Cloning
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Inverse Reinforcement Learning
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We’ll talk about this later in the 
semester!



Imitation Learning via Behavioral Cloning
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Live demo

https://github.com/dsbrown1331/imitation_learning/blob/main/READ
ME.md 

python test_gym.py

python mountain_car_bc.py --num_demos 1
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https://github.com/dsbrown1331/imitation_learning/blob/main/README.md
https://github.com/dsbrown1331/imitation_learning/blob/main/README.md
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ALVINN: One of the first imitation learning systems
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ALVINN: One of the first imitation learning systems
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What if you don’t have actions?
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Behavioral Cloning from Observation 
(Torabi et al. 2018)
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