
Behavioral Cloning and
Interactive Imitation Learning

Instructor: Daniel Brown
[Some slides adapted from Sergey Levine (CS 285) and Alina Vereshchaka (CSE4/510)]

2

Brief Machine Learning Refresher

There are roughly 3 main branches of machine learning

• Supervised Learning

• Unsupervised Learning

• Reinforcement Learning

3

Supervised Learning

• Setting/Assumptions: In supervised learning, the model is trained on
labeled data, where the input data is paired with the correct output
(i.e., the "ground truth").

• Goal: To learn a mapping from inputs to outputs so that the model
can predict the output for new, unseen inputs.

• Common Use Cases:
• Classification (e.g., spam email detection, image recognition).
• Regression (e.g., predicting house prices, stock market trends).

• Example models:
• Linear regression, decision trees, support vector machines, and neural

networks.

4

Multi-class Logistic Regression

▪ = special case of neural network

z1

z2

z3

f1(x)

f2(x)

f3(x)

fK(x)

s

o

f

t

m

a

x
…

Deep Neural Network = Also learn the features!

f1(x)

f2(x)

f3(x)

fK(x)

s

o

f

t

m

a

x
…

x1

x2

x3

xL

… … … …

…

g = nonlinear activation function

Classification

7

PyTorch Example

8

import torch.nn as nn

import torch.optim as optim

class ClassificationNetwork(nn.Module):

 def __init__(self, input_dim, num_classes):

 super(ClassificationNetwork, self).__init__()

 self.fc = nn.Linear(input_dim, num_classes)

 def forward(self, x):

 return self.fc(x)

model = ClassificationNetwork(input_dim, num_classes)

criterion = nn.CrossEntropyLoss()

optimizer = optim.Adam(model.parameters(), lr=0.001)

for epoch in range(num_epochs):

 for inputs, labels in dataloader:

 optimizer.zero_grad()

 outputs = model(inputs)

 loss = criterion(outputs, labels)

 loss.backward()
 optimizer.step()

PyTorch Example (MLP)

9

import torch.nn as nn

import torch.optim as optim

class ClassificationNetwork(nn.Module):

 def __init__(self, input_dim, num_classes):

 super(ClassificationNetwork, self).__init__()

 self.fc1 = nn.Linear(input_dim, num_hidden)

 self.relu = nn.ReLU()

 self.fc2 = nn.Linear(num_hidden, num_classes)

 def forward(self, x):

 return self.fc2(self.relu(self.fc1(x)))

model = ClassificationNetwork(input_dim, num_classes)

criterion = nn.CrossEntropyLoss()

optimizer = optim.Adam(model.parameters(), lr=0.001)

for epoch in range(num_epochs):

 for inputs, labels in dataloader:

 optimizer.zero_grad()

 outputs = model(inputs)

 loss = criterion(outputs, labels)

 loss.backward()
 optimizer.step()

Deep Neural Networks for Regression

…

x1

x2

x3

xL

… … … …

…

ො𝑦

Deep Neural Networks for Regression

…

x1

x2

x3

xL

… … … …

…

ො𝑦1

ො𝑦2

ො𝑦2

Regression

12

PyTorch Example

13

import torch.nn as nn

import torch.optim as optim

class ClassificationNetwork(nn.Module):

 def __init__(self, input_dim, num_classes):

 super(ClassificationNetwork, self).__init__()

 self.fc = nn.Linear(input_dim, num_classes)

 def forward(self, x):

 return self.fc(x)

model = ClassificationNetwork(input_dim, num_classes)

criterion = nn.CrossEntropyLoss()

optimizer = optim.Adam(model.parameters(), lr=0.001)

for epoch in range(num_epochs):

 for inputs, labels in dataloader:

 optimizer.zero_grad()

 outputs = model(inputs)

 loss = criterion(outputs, labels)

 loss.backward()
 optimizer.step()

Reinforcement Learning

• Setting/Assumptions: Reinforcement learning (RL) involves training an
agent to make decisions by interacting with an environment. The agent
learns through trial and error (receiving rewards and penalties), optimizing
its behavior to maximize cumulative rewards.

• Goal: To learn a policy that maps states of the environment to actions that
achieve the highest reward.

• Common Use Cases:
• Game-playing AI (e.g., AlphaGo, chess-playing bots).
• Robotics (e.g., autonomous navigation).
• Dynamic resource allocation (e.g., in networking or traffic management).

• Examples:
• Q-learning, Deep Q-Networks (DQN), and Proximal Policy Optimization (PPO).

14

Reinforcement Learning

Action

Observation

Reward

15

Reinforcement Learning

Action

Observation

Reward

16

Reward engineering is hard!

Action

Observation

Reward

17

Reward engineering is hard!

Action

Observation

Reward

18

Reward engineering is hard!

19

Reinforcement learning is hard…even with a
reward function!

20

Imitation Learning (Learning from Demonstrations):

21

• Often showing is easier than telling.
• Alleviates problem of exploration.

Learn a policy from examples of good behavior.

Behavioral Cloning

Action

Observation

What would the
human do?

Policy 𝜋

Action

Observation
Action

22

Inverse Reinforcement Learning

Action

Observation

Why? What is the
human’s reward

function?

Reward

Reward

Action

Observation
Action

Reward
23

We’ll talk about this later in the
semester!

Imitation Learning via Behavioral Cloning

24

Live demo

https://github.com/dsbrown1331/imitation_learning/blob/main/READ
ME.md

python test_gym.py

python mountain_car_bc.py --num_demos 1

25

https://github.com/dsbrown1331/imitation_learning/blob/main/README.md
https://github.com/dsbrown1331/imitation_learning/blob/main/README.md
https://github.com/dsbrown1331/imitation_learning/blob/main/README.md

ALVINN: One of the first imitation learning systems

26

ALVINN: One of the first imitation learning systems

27

What if you don’t have actions?

28

Behavioral Cloning from Observation
(Torabi et al. 2018)

29

	Default Section
	Slide 1: Behavioral Cloning and Interactive Imitation Learning
	Slide 2
	Slide 3: Brief Machine Learning Refresher
	Slide 4: Supervised Learning
	Slide 5: Multi-class Logistic Regression
	Slide 6: Deep Neural Network = Also learn the features!
	Slide 7: Classification
	Slide 8: PyTorch Example
	Slide 9: PyTorch Example (MLP)
	Slide 10: Deep Neural Networks for Regression
	Slide 11: Deep Neural Networks for Regression
	Slide 12: Regression
	Slide 13: PyTorch Example
	Slide 14: Reinforcement Learning
	Slide 15: Reinforcement Learning
	Slide 16: Reinforcement Learning
	Slide 17: Reward engineering is hard!
	Slide 18: Reward engineering is hard!
	Slide 19: Reward engineering is hard!
	Slide 20: Reinforcement learning is hard…even with a reward function!
	Slide 21: Imitation Learning (Learning from Demonstrations):
	Slide 22: Behavioral Cloning
	Slide 23: Inverse Reinforcement Learning
	Slide 24: Imitation Learning via Behavioral Cloning
	Slide 25: Live demo
	Slide 26: ALVINN: One of the first imitation learning systems
	Slide 27: ALVINN: One of the first imitation learning systems
	Slide 28: What if you don’t have actions?
	Slide 29: Behavioral Cloning from Observation (Torabi et al. 2018)

