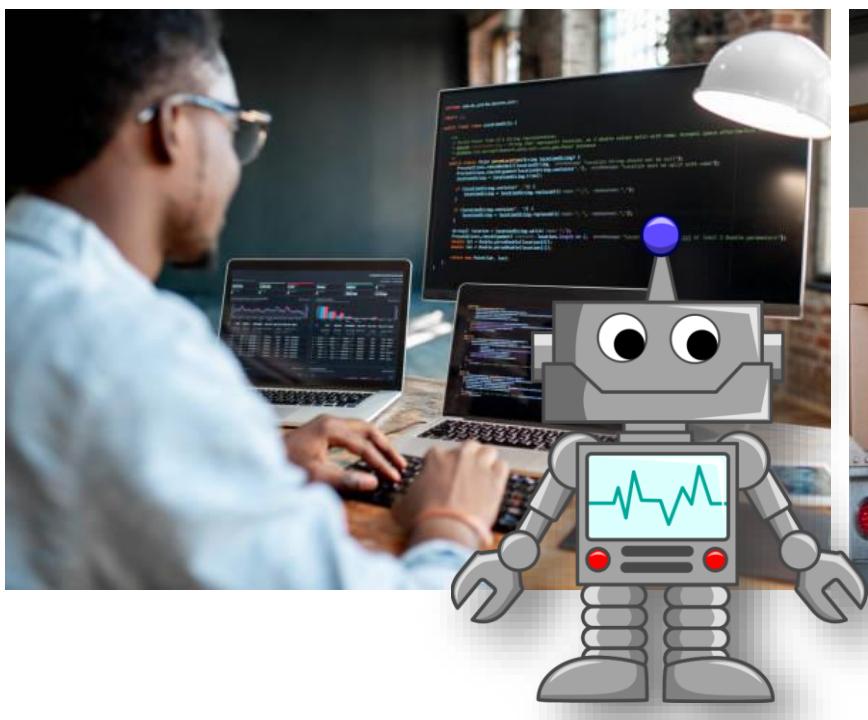


Behavioral Cloning and Interactive Imitation Learning

Instructor: Daniel Brown

[Some slides adapted from Sergey Levine (CS 285) and Alina Vereshchaka (CSE4/510)]



Brief Machine Learning Refresher

There are roughly 3 main branches of machine learning

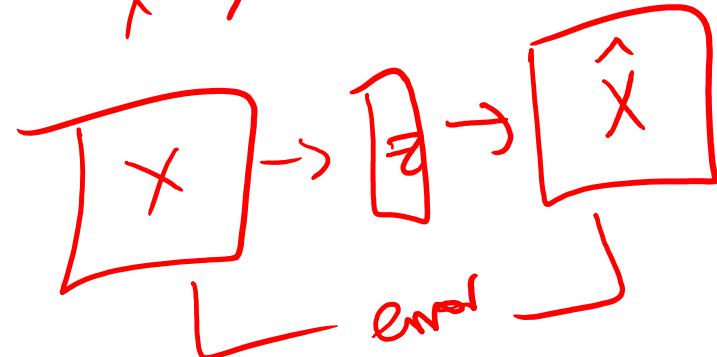
- Supervised Learning
- Unsupervised Learning
- Reinforcement Learning

- labeled data (x, y)
- structure representation learning
- trial & error learning
- reward signal

$$f_0(x) \rightarrow y$$

self-supervised

$$x \rightarrow z \rightarrow x$$



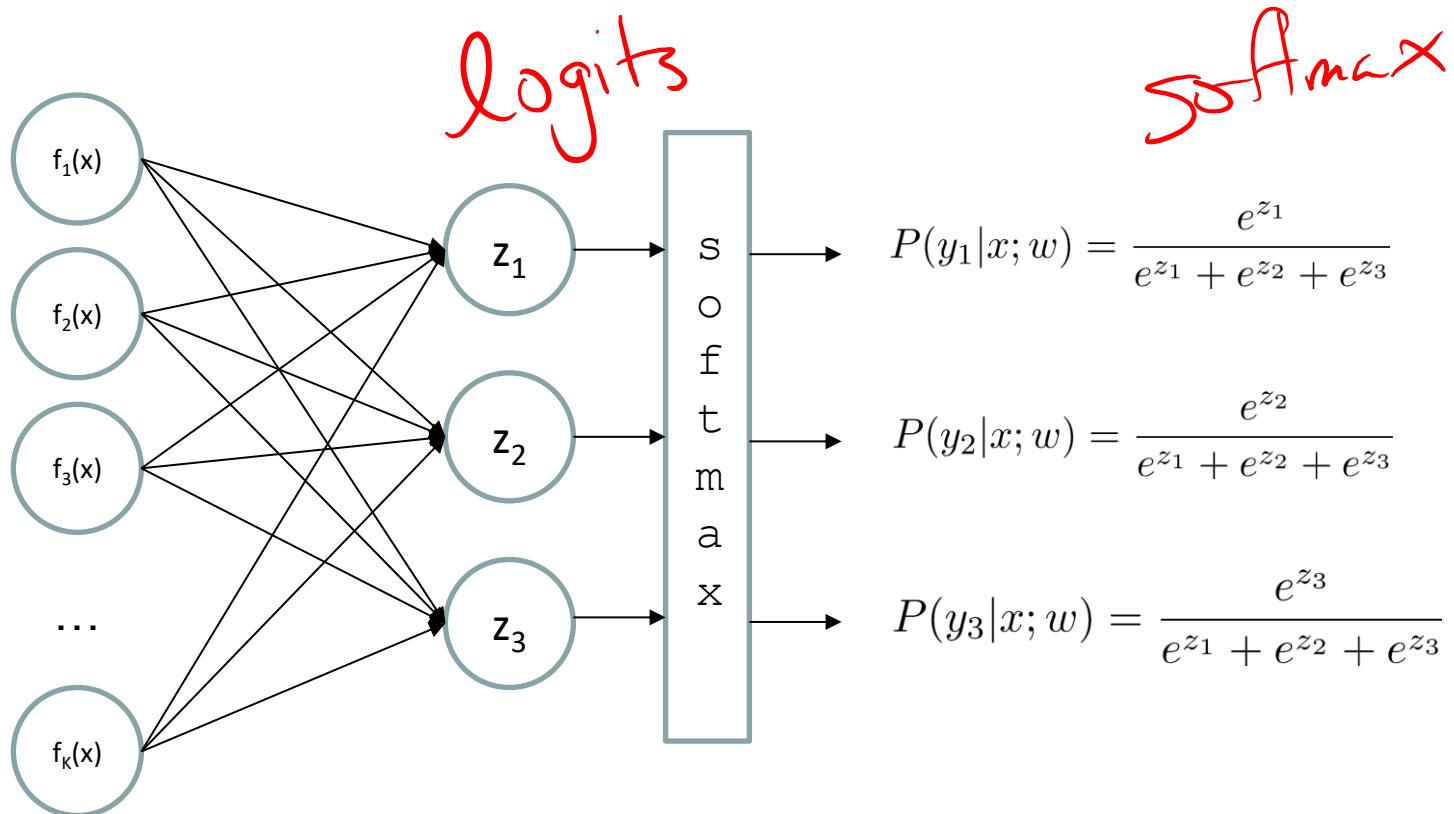
Supervised Learning

- **Setting/Assumptions:** In supervised learning, the model is trained on labeled data, where the input data is paired with the correct output (i.e., the "ground truth").
- **Goal:** To learn a mapping from inputs to outputs so that the model can predict the output for new, unseen inputs.
- **Common Use Cases:**
 - Classification (e.g., spam email detection, image recognition).
 - Regression (e.g., predicting house prices, stock market trends).
- **Example models:**
 - Linear regression, decision trees, support vector machines, and neural networks.

Multi-class Logistic Regression

- = special case of neural network

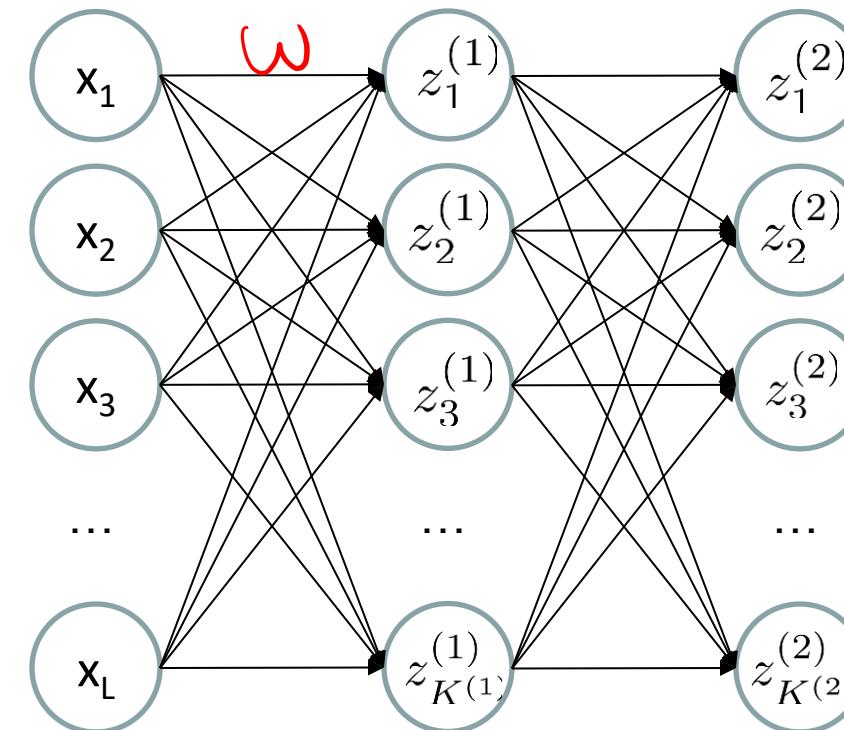
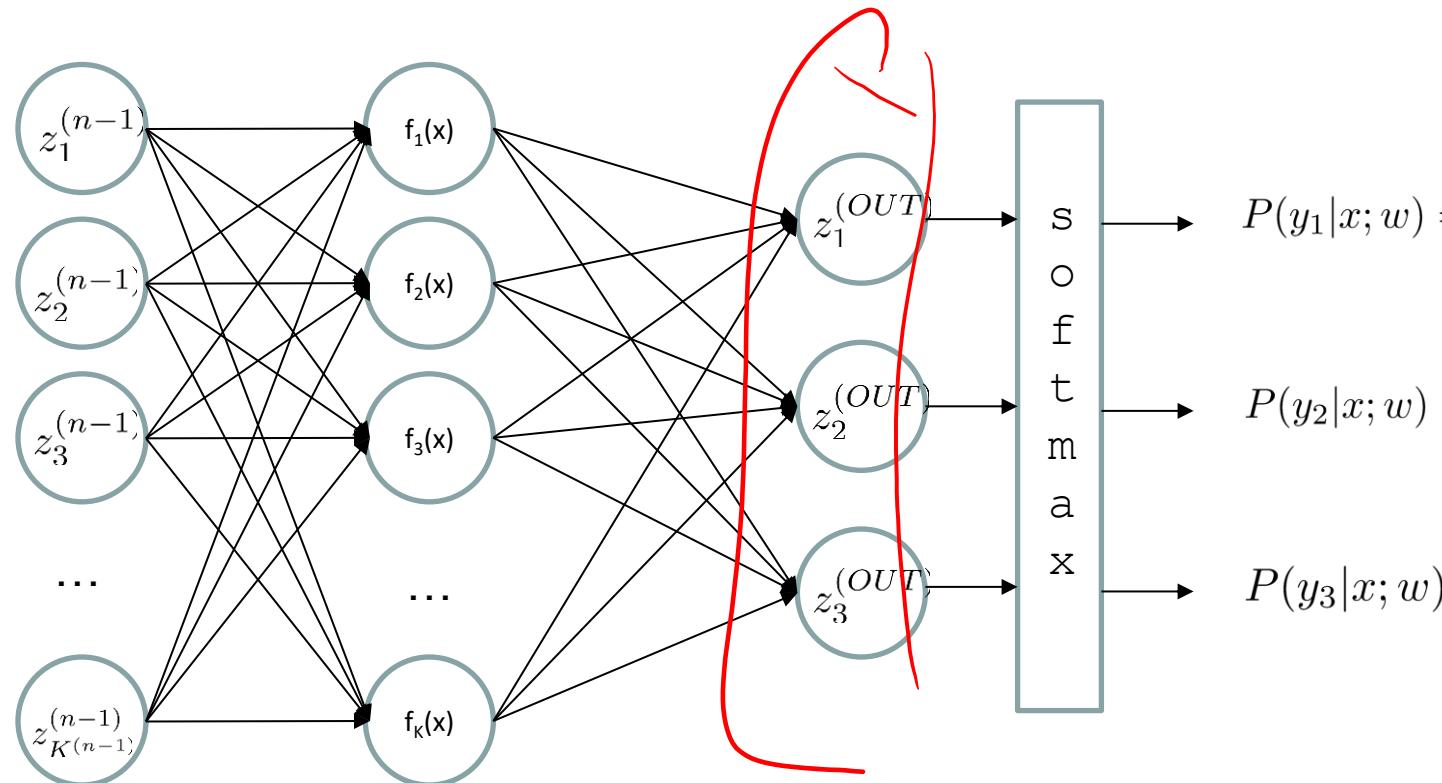
classes = 3



Deep Neural Network = Also learn the features!

$g =$

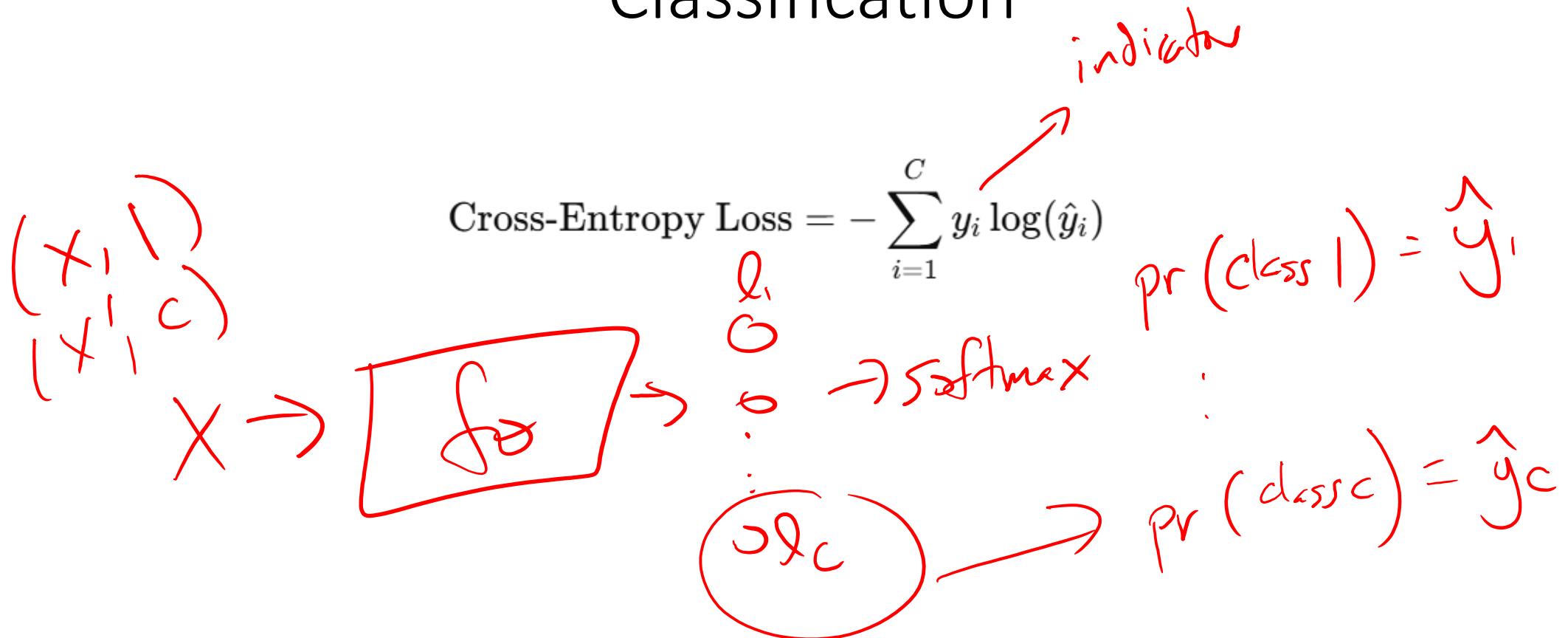
logits



$$z_i^{(k)} = g\left(\sum_j W_{i,j}^{(k-1,k)} z_j^{(k-1)}\right)$$

g = nonlinear activation function

Classification



PyTorch Example

```
import torch.nn as nn
import torch.optim as optim

class ClassificationNetwork(nn.Module):
    def __init__(self, input_dim, num_classes):
        super(ClassificationNetwork, self).__init__()
        self.fc = nn.Linear(input_dim, num_classes)

    def forward(self, x):
        return self.fc(x)

model = ClassificationNetwork(input_dim, num_classes)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

for epoch in range(num_epochs):
    for inputs, labels in dataloader:
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
```

fc1
fc2

PyTorch Example (MLP)

```
import torch.nn as nn
import torch.optim as optim

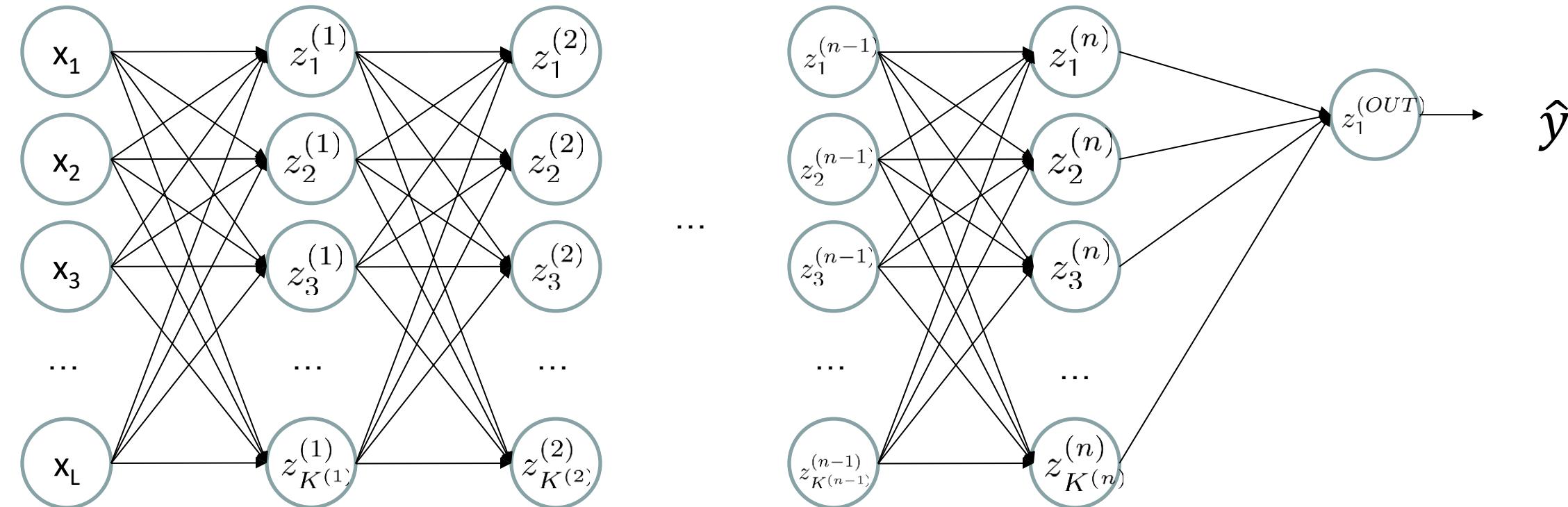
class ClassificationNetwork(nn.Module):
    def __init__(self, input_dim, num_classes):
        super(ClassificationNetwork, self).__init__()
        self.fc1 = nn.Linear(input_dim, num_hidden)
        self.relu = nn.ReLU() ← layer 2
        self.fc2 = nn.Linear(num_hidden, num_classes)

    def forward(self, x):
        return self.fc2(self.relu(self.fc1(x)))

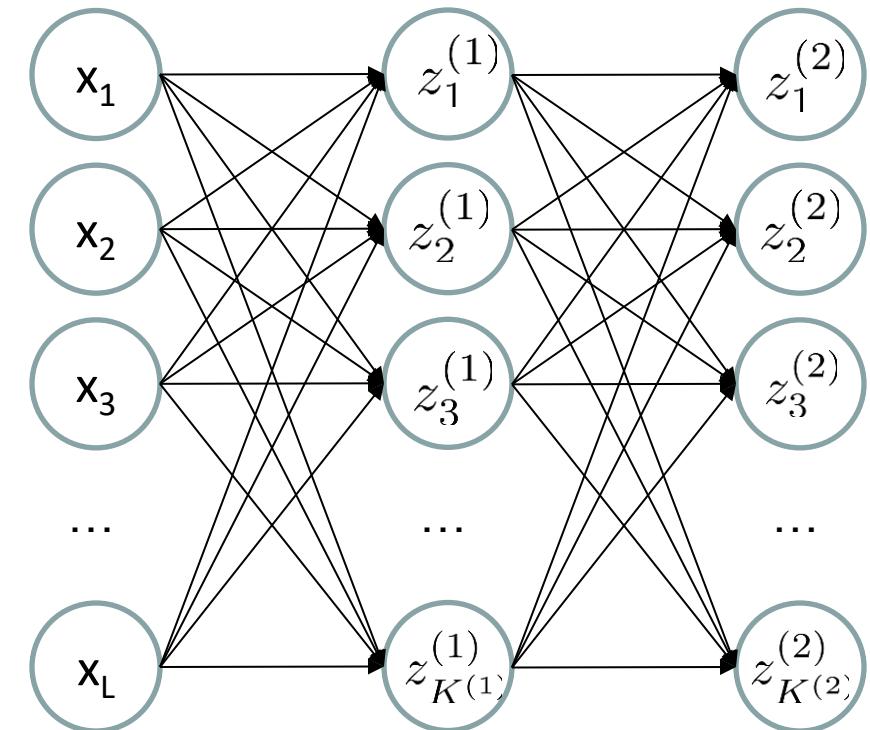
model = ClassificationNetwork(input_dim, num_classes)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

for epoch in range(num_epochs):
    for inputs, labels in dataloader:
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
```

Deep Neural Networks for Regression



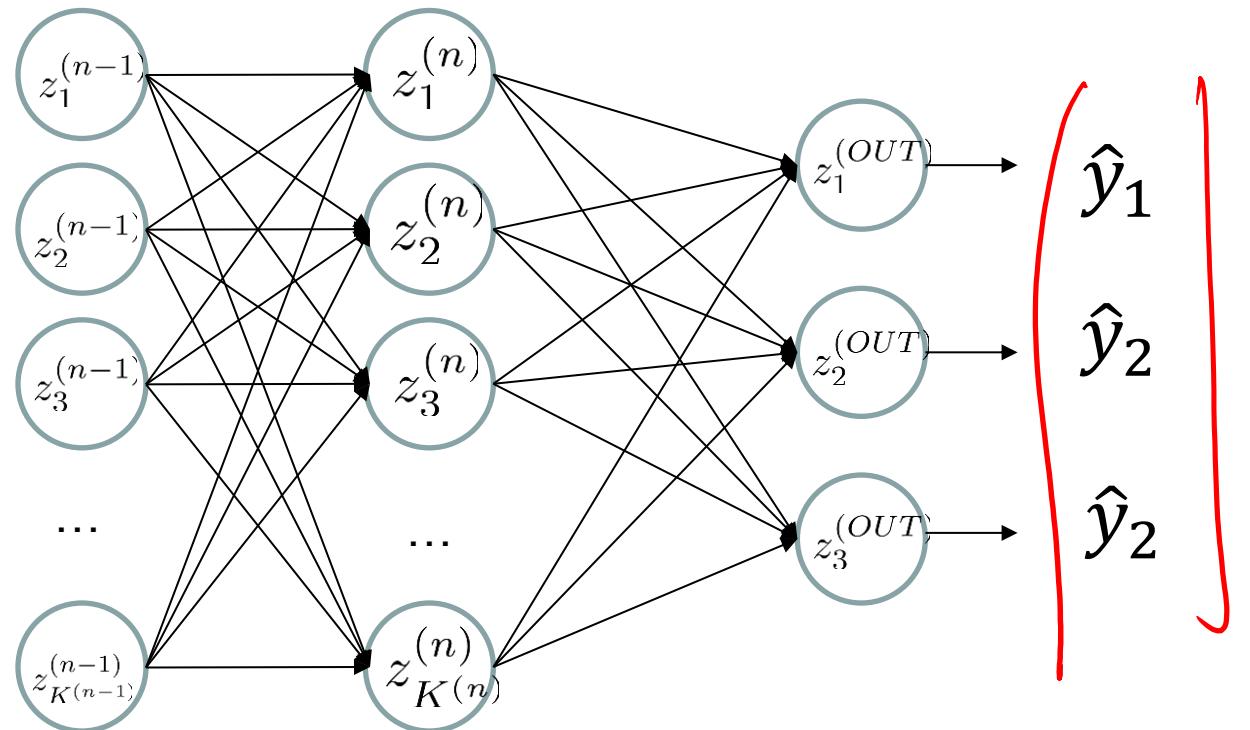
Deep Neural Networks for Regression



...

...

...



...

...

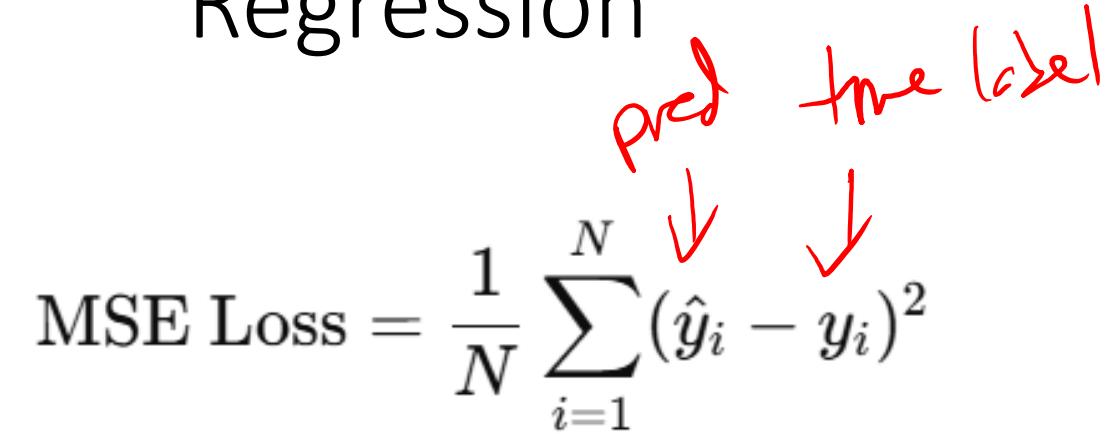
...

\hat{y}_1
 \hat{y}_2
 \hat{y}_3

Regression

$$\text{MSE Loss} = \frac{1}{N} \sum_{i=1}^N (\hat{y}_i - y_i)^2$$

pred *true label*



PyTorch Example

```
import torch.nn as nn
import torch.optim as optim
class ClassificationNetwork(nn.Module):
    def __init__(self, input_dim, num_classes):
        super(ClassificationNetwork, self).__init__()
        self.fc = nn.Linear(input_dim, num_classes)

    def forward(self, x):
        return self.fc(x)
model = ClassificationNetwork(input_dim, num_classes)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)

for epoch in range(num_epochs):
    for inputs, labels in dataloader:
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
```

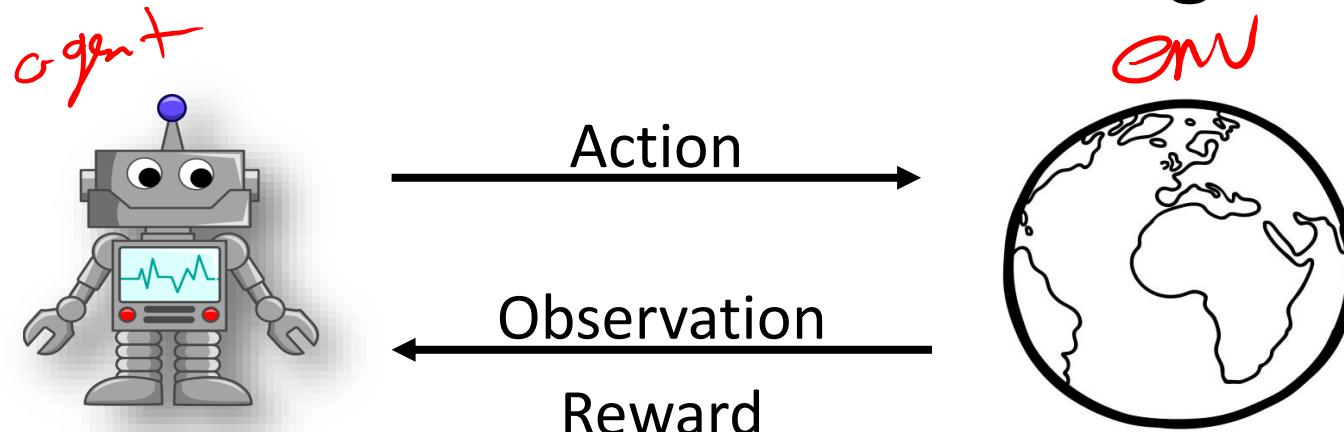
Regression

MSE

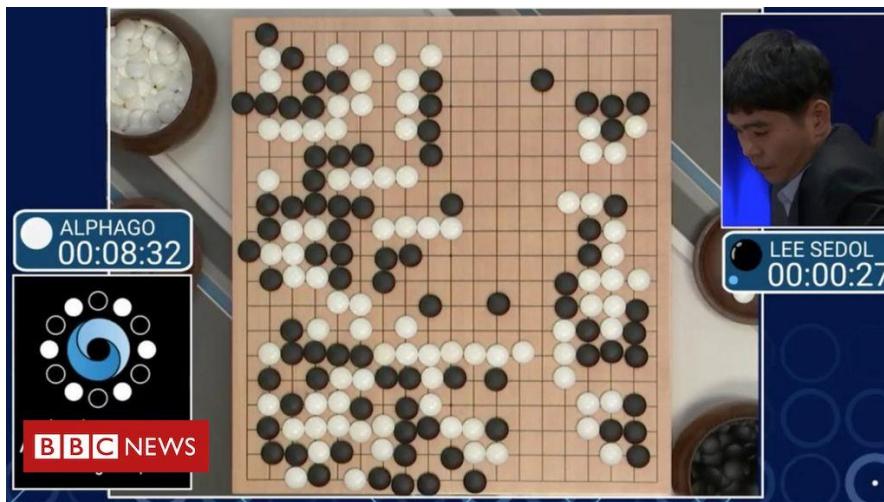
Reinforcement Learning

- **Setting/Assumptions:** Reinforcement learning (RL) involves training an agent to make decisions by interacting with an environment. The agent learns through trial and error (receiving rewards and penalties), optimizing its behavior to maximize cumulative rewards.
- **Goal:** To learn a policy that maps states of the environment to actions that achieve the highest reward.
- **Common Use Cases:**
 - Game-playing AI (e.g., AlphaGo, chess-playing bots).
 - Robotics (e.g., autonomous navigation).
 - Dynamic resource allocation (e.g., in networking or traffic management).
- **Examples:**
 - Q-learning, Deep Q-Networks (DQN), and Proximal Policy Optimization (PPO).

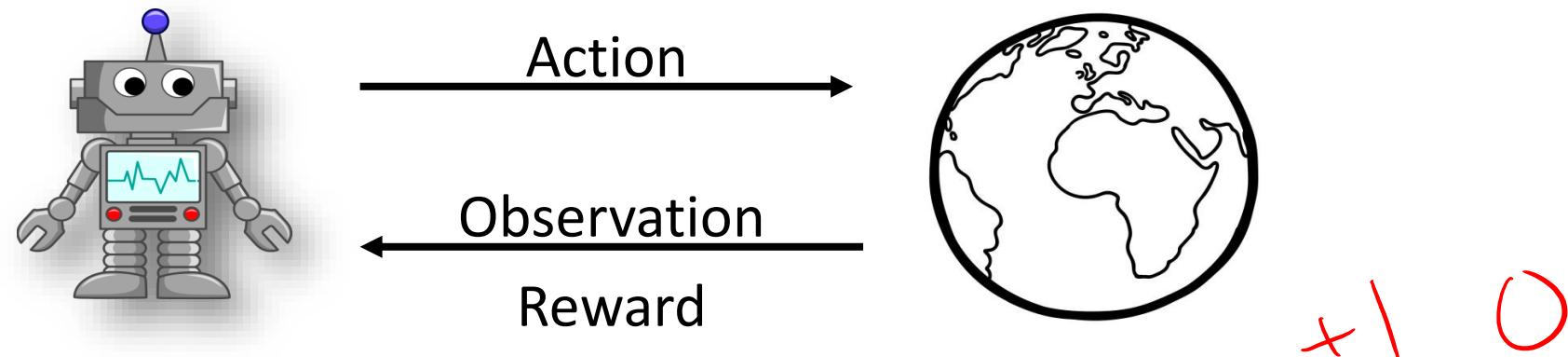
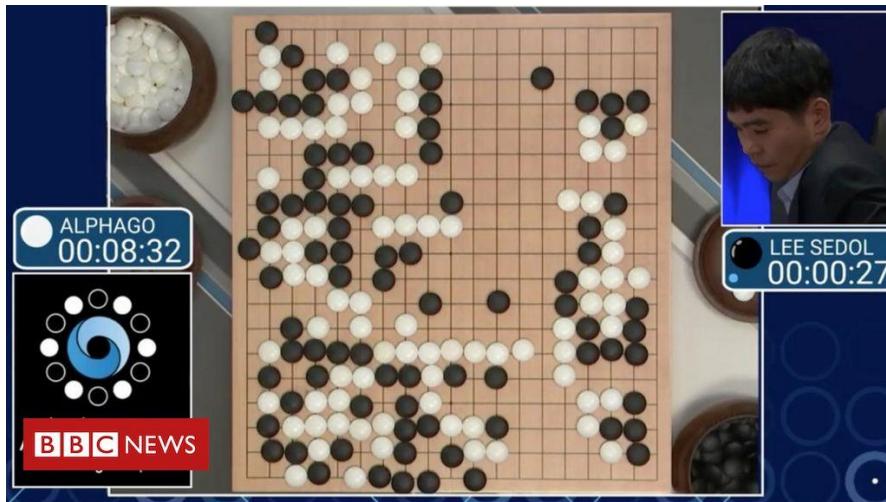
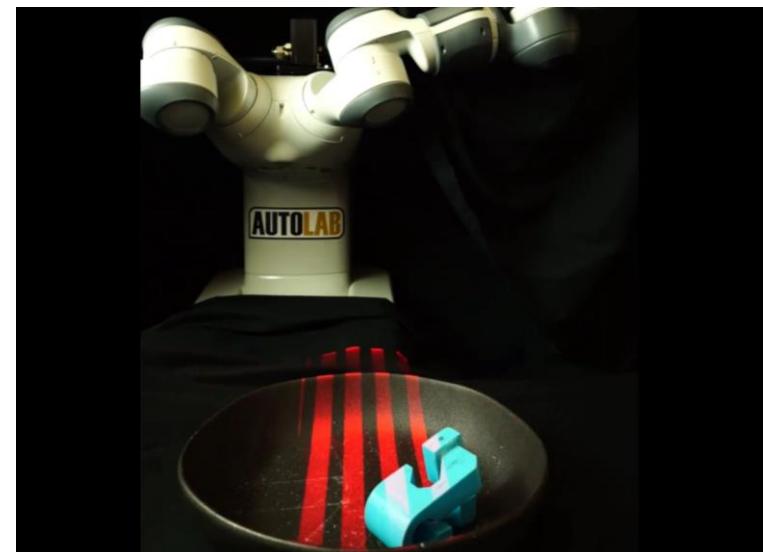
Reinforcement Learning



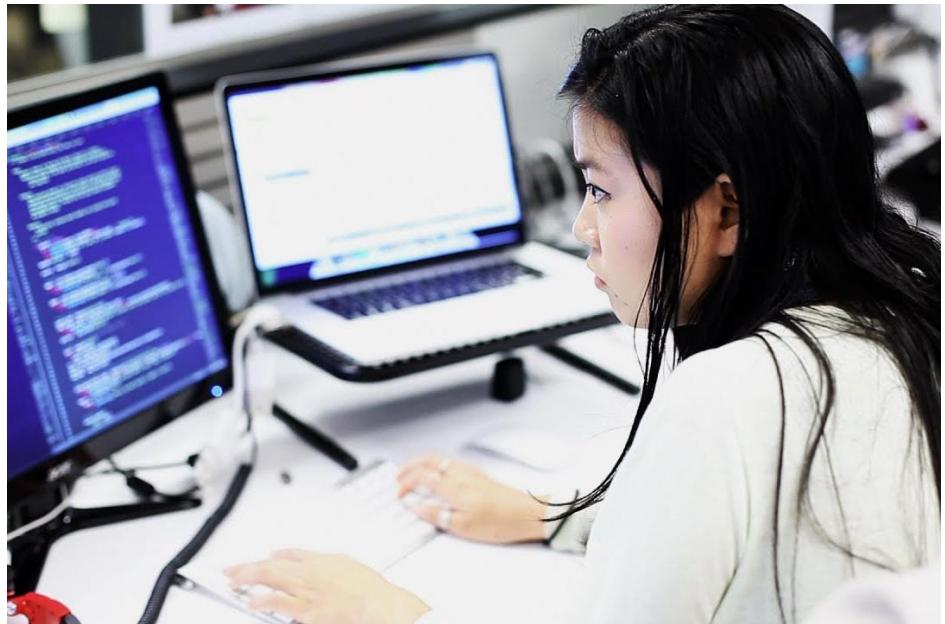
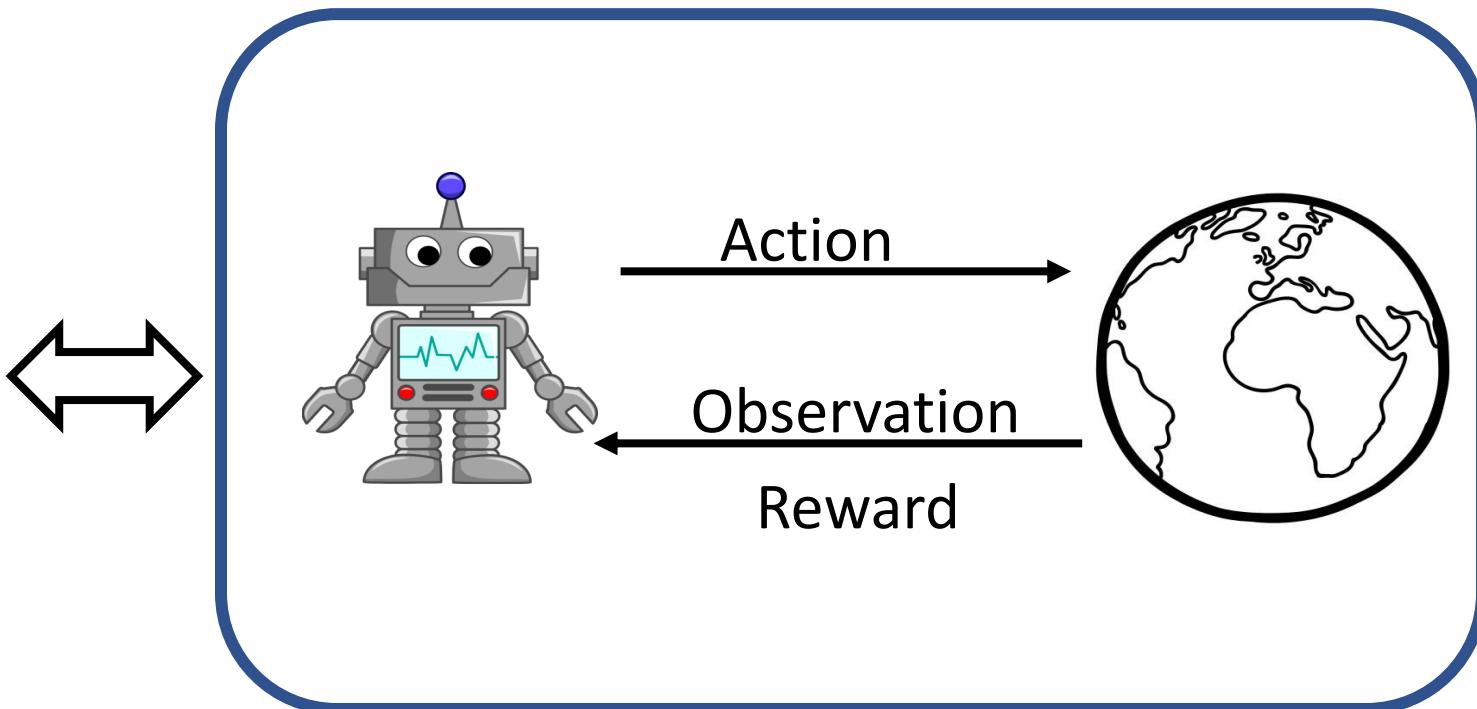
$$r = +1 \text{ win} -1 \text{ lose}$$



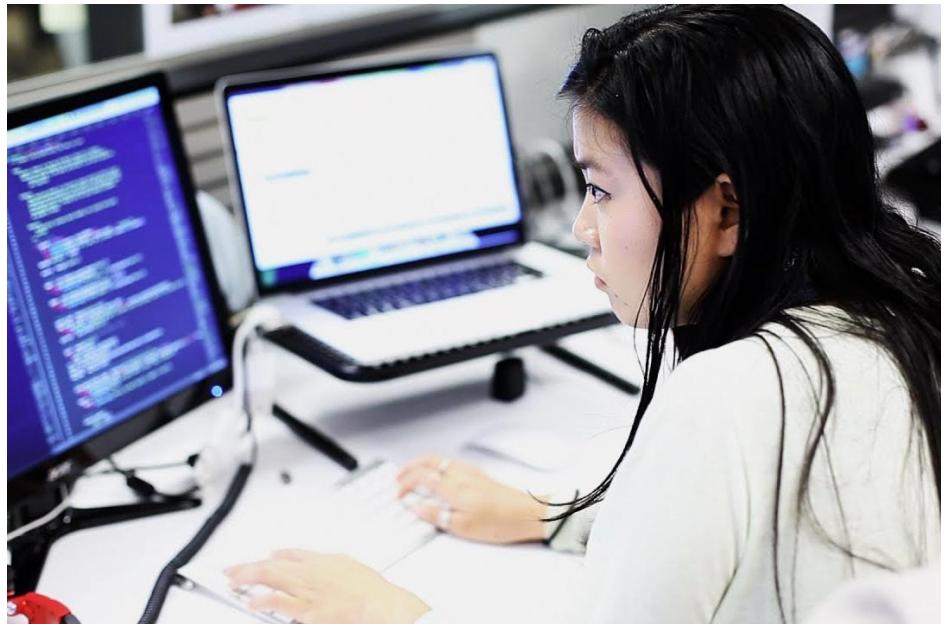
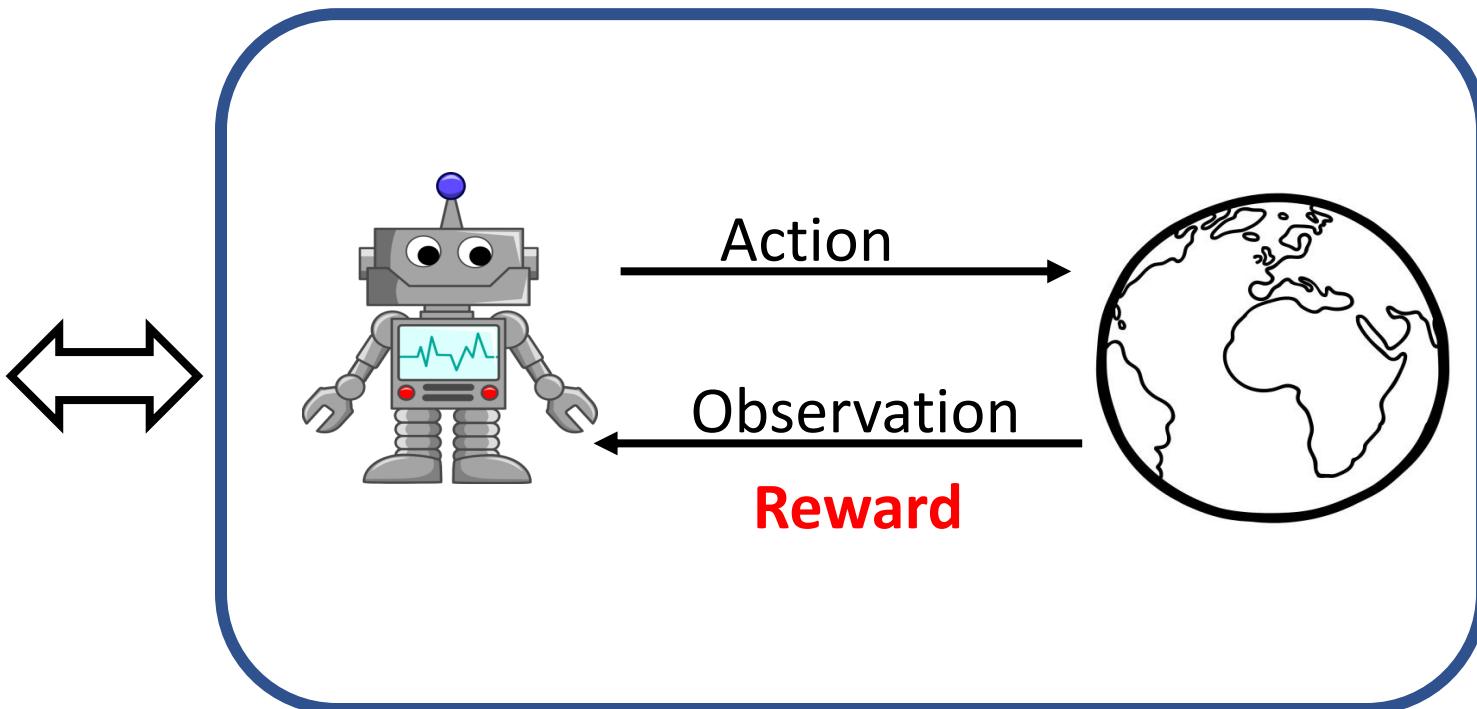
Reinforcement Learning



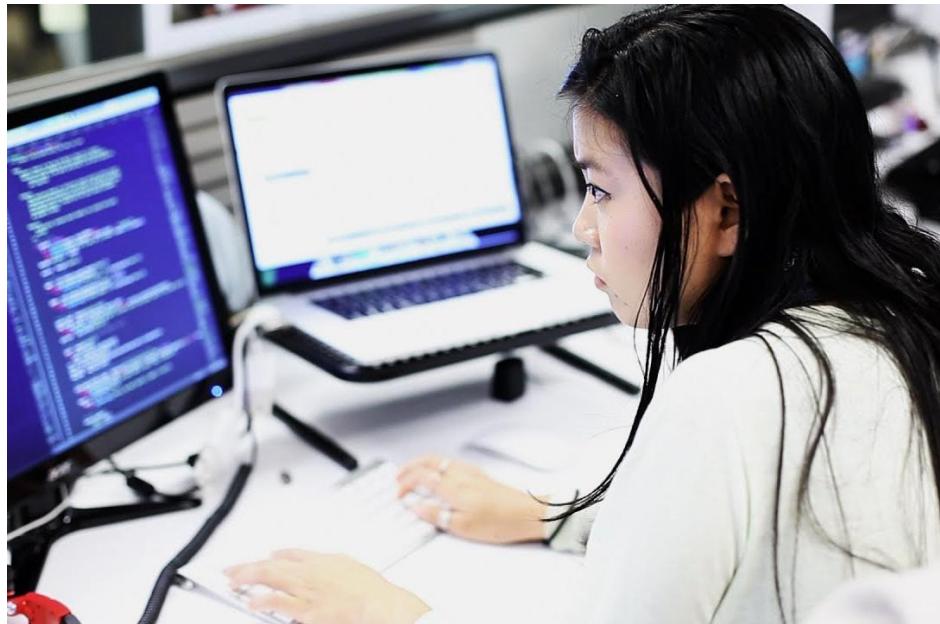
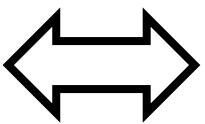
Reward engineering is hard!



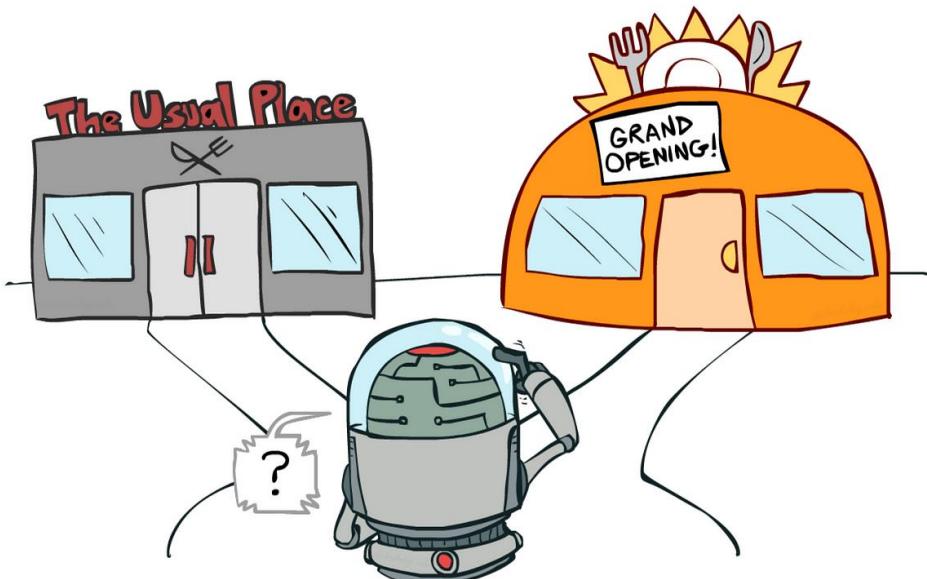
Reward engineering is hard!



Reward engineering is hard!



Reinforcement learning is hard...even with a reward function!



Imitation Learning (Learning from Demonstrations):

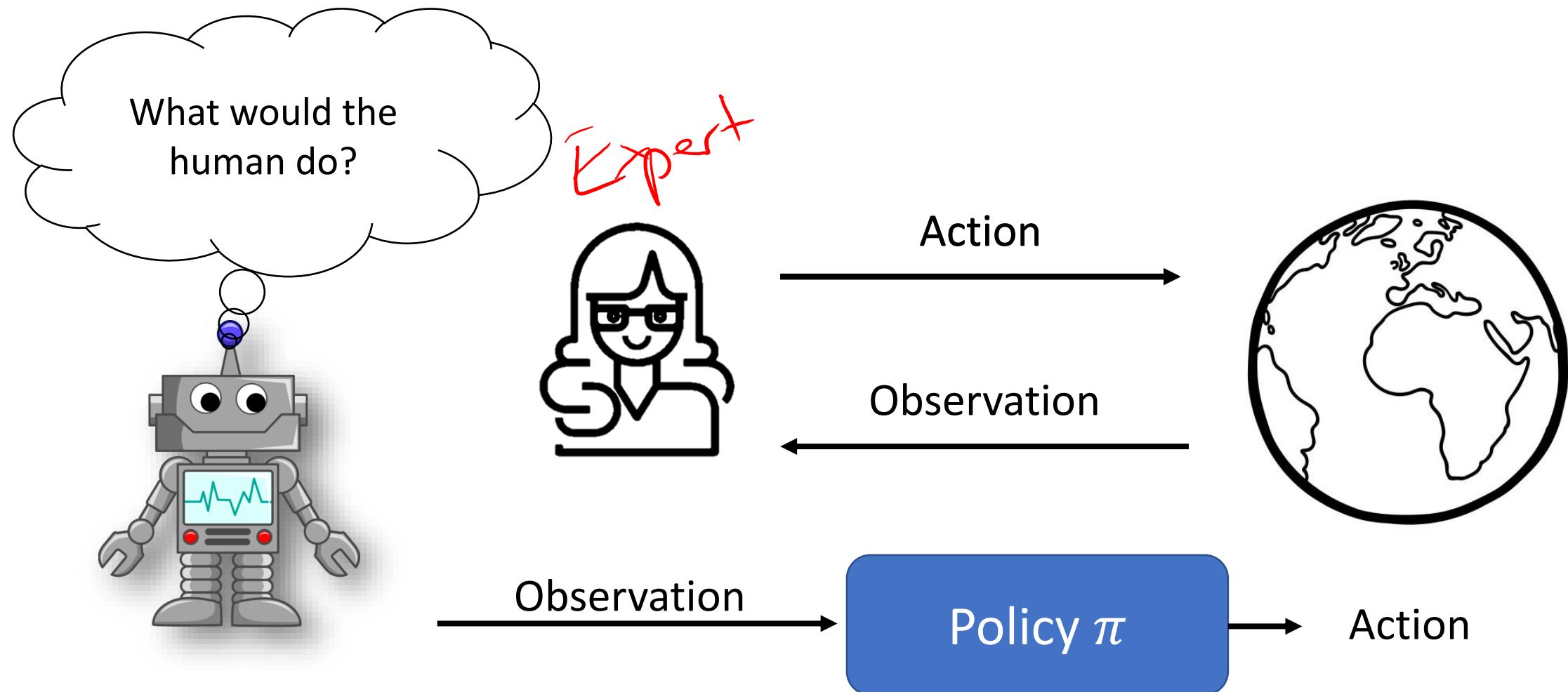
Learn a policy from examples of good behavior.

$\pi(s) \rightarrow a$

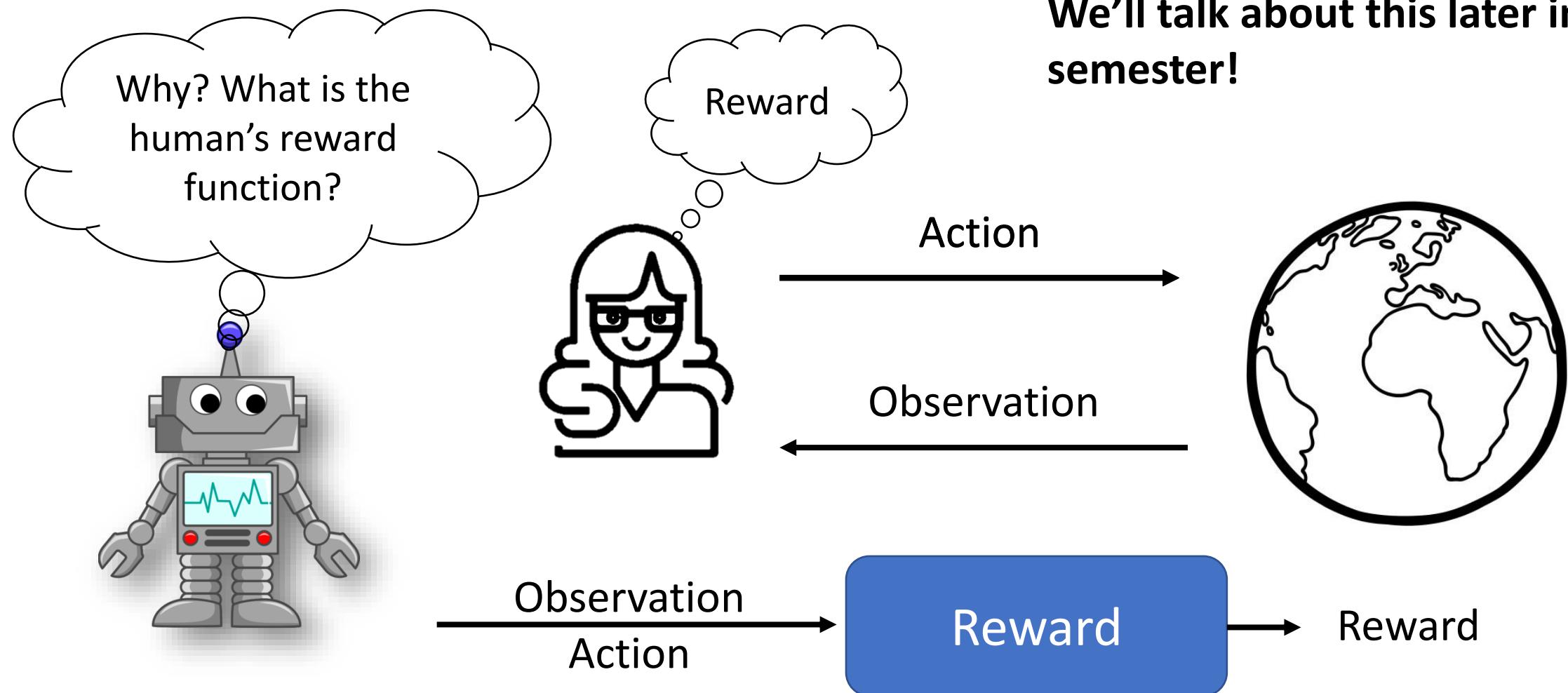
- Often showing is easier than telling.
- Alleviates problem of exploration.

$x \ p(x)$

Behavioral Cloning

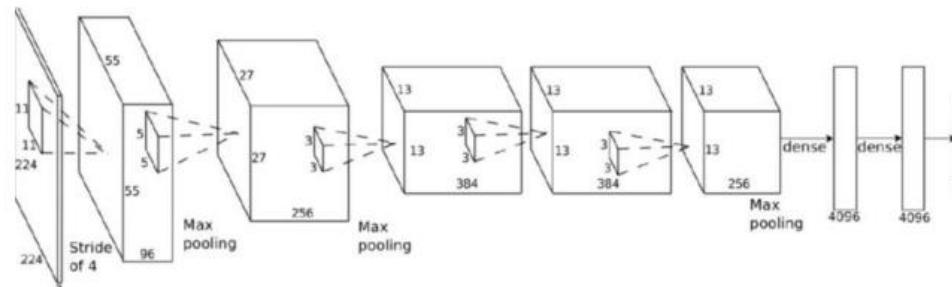


Inverse Reinforcement Learning



Imitation Learning via Behavioral Cloning

\mathbf{o}_t



$\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)$

\mathbf{a}_t

\mathbf{o}_t
 \mathbf{a}_t

supervised
learning

output input
↓ ↓
 $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)$

Live demo

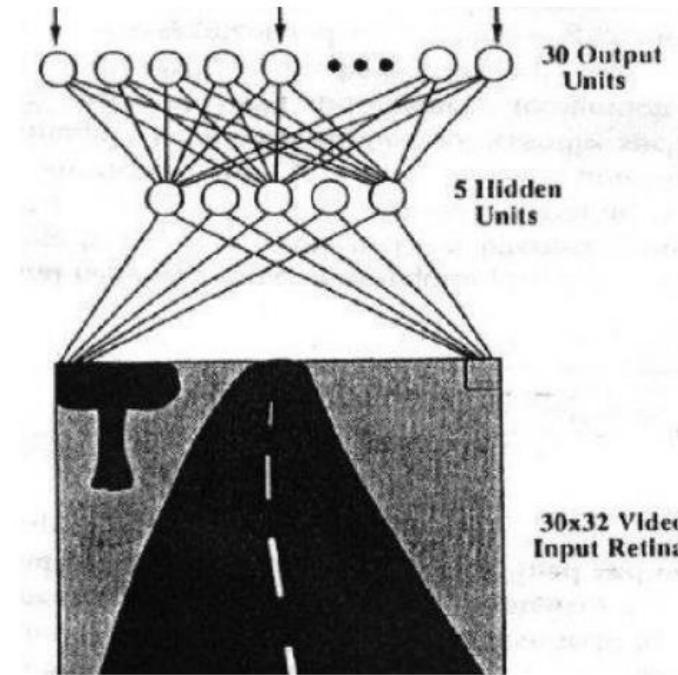
[https://github.com/dsbrown1331/imitation learning/blob/main/README.md](https://github.com/dsbrown1331/imitation_learning/blob/main/README.md)

`python test_gym.py`

`python mountain_car_bc.py --num_demos 1`

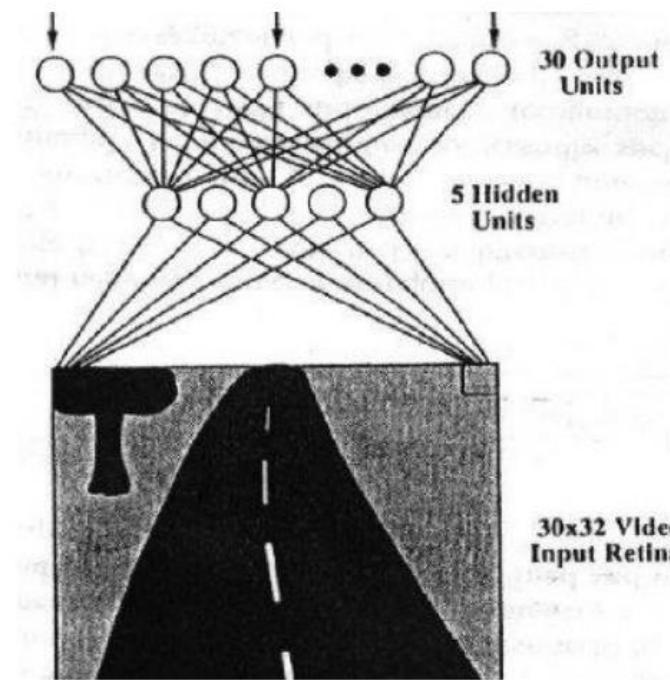
ALVINN: One of the first imitation learning systems

ALVINN: Autonomous Land Vehicle In a Neural Network
1989



ALVINN: One of the first imitation learning systems

ALVINN: Autonomous Land Vehicle In a Neural Network
1989



What if you don't have actions?

The screenshot shows a YouTube search results page for the query "tire change". The main video thumbnail on the left shows a man in a white shirt changing a tire on a silver car. The video has 3.5M views and is 15 years old. The video title is "How to Change a Tire | Change a flat car tire step by step". The channel is "Howdini" with 714K subscribers. The video duration is 5:34. The video player interface includes a play button, volume control, and a progress bar at 3:17. To the right of the main video are several recommended videos:

- AHSOKA** Ad - www.disneyplus.com: How to change a tire | Dad, how do I? (13:24)
- Pushing Pistons**: How to Replace your Flat Tire (0:57)
- The Tire Doctor**: Steer Tire Change (1:01)
- Your Home Garage**: Winter Tire Swap (12:47)
- ChrisFix**: How to Plug a Flat Tire (easily) (1:00)
- Charlie Berens**: POV Tire Change with your Dad #shorts (7:44 views, 6 months ago)

Behavioral Cloning from Observation (Torabi et al. 2018)

$$\mathcal{D} = \{(s^a, \dots, s^a), (s'_0, s'_1, \dots, s'_t)\}$$
$$\mathcal{D} = \{(s_0, s_1, s_2, \dots, s_t), (s'_0, s'_1, \dots, s'_t)\}$$