Interactive Imitation Learning

Instructor: Daniel Brown

[Some slides adapted from Sergey Levine (CS 285) and Alina Vereshchaka (CSE4/510)]
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Can we make it work more often?
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DAgger

can we make pgata(0t) = pr,(0¢)7

idea: instead of being clever about p,(0¢), be clever about pgata(0t)!

DAgger: Dataset Aggregation

goal: collect training data from p,, (o) instead of pgata(0¢)
how? just run my(a;|o;)

but need labels a;!

1. train mg(a;|o;) from human data D = {0y,a;,...,0yx,an}
2. run my(as|o;) to get dataset D, = {01,...,0p}
3. Ask human to label D, with actions a;

4. Aggregate: D < D UD,
Ross et al. ‘11
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Human-Gated Interactive |IL

[3] M. Kelly, C. Sidrane, K. Driggs-Campbell, and M. J. Kochenderfer. HG-DAgger: Interactive Imitation
Learning with Human Experts. ICRA 2019. 12



Human-Gated Interactive |IL

[3] M. Kelly, C. Sidrane, K. Driggs-Campbell, and M. J. Kochenderfer. HG-DAgger: Interactive Imitation
Learning with Human Experts. ICRA 20109. 13



Robot-Gated Interactive |IL

[4] J. Zhang, K. Cho. Query-Efficient Imitation Learning for End-to-End Autonomous Driving. AAAI 2017.
[5] K. Menda, K. Driggs-Campbell, M. Kochenderfer. EnsembleDAgger: A Bayesian Approach to Safe Imitation

Learning. IROS 2019. ”



When should a robot ask for help?

Novel (and risky)
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When should a robot ask for help?
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Novelty Estimation

18



Novelty

Estimation: Supervisor Mode
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Target percent of time human Th rlfty DAgge I

wants to give interventions.
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Hoque et al. "ThriftyDAgger: Budget-Aware Novelty and Risk Gating for Interactive Imitation Learning." CoRL 2021. 29



ThriftyDAgger
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Hoque et al. "ThriftyDAgger: Budget-Aware Novelty and Risk Gating for Interactive Imitation Learning." CoRL 2021. 30



ThriftyDAgger

Human

Hoque et al. "ThriftyDAgger: Budget-Aware Novelty and Risk Gating for Interactive Imitation Learning." CoRL 2021. 31



Hoque et al. "ThriftyDAgger: Budget-Aware Novelty and Risk Gating for Interactive Imitation Learning." CoRL 2021. 32
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Autonomous Mode
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Hoque et al. "ThriftyDAgger: Budget-Aware Novelty and Risk Gating for Interactive Imitation Learning." CoRL 2021. 33
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Human Demonstration
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Behavior Cloning

Hoque et al. "ThriftyDAgger: Budget-Aware Novelty and Risk Gating for Interactive Imitation Learning." CoRL 2021. 39
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Behavior Cloning ThriftyDAgger (autonomous)

Hoque et al. "ThriftyDAgger: Budget-Aware Novelty and Risk Gating for Interactive Imitation Learning." CoRL 2021. 40



Behavior Cloning ThriftyDAgger (autonomous) ThriftyDAgger (+human)
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Hoque et al. "ThriftyDAgger: Budget-Aware Novelty and Risk Gating for Interactive Imitation Learning." CoRL 2021. 41



User Study

N=10 subjects each control 3 robots in simulation.
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ThrittyDAgger Qualitative Results
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User Study Quantitative Results

ThriftyDAgger had
e 21% fewer human interventions

* 57% more concentration pairs found
* 80% more throughput
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