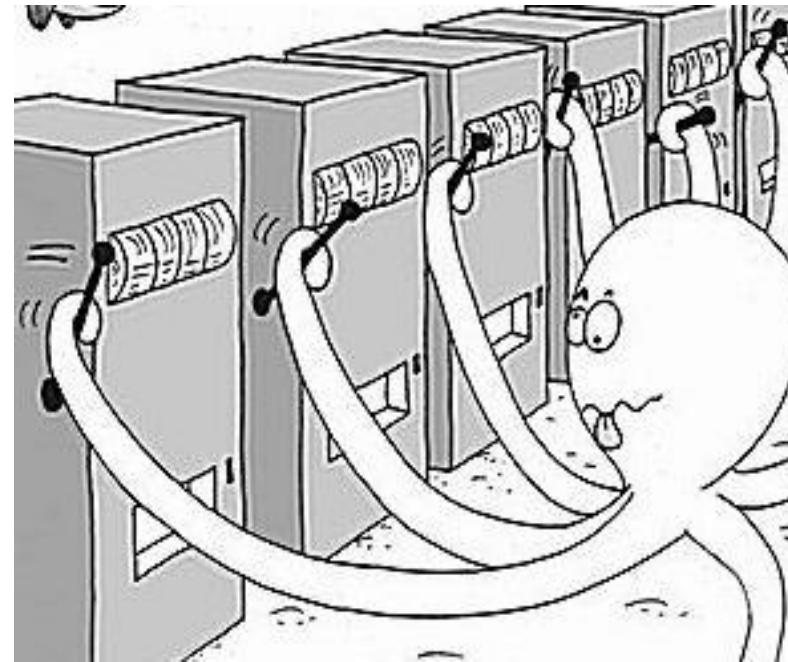


Multi-Armed Bandits

Daniel Brown

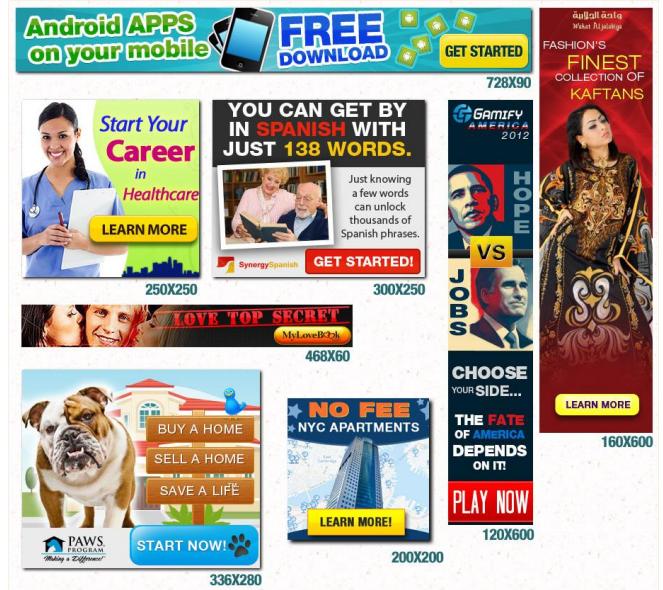


Evaluative feedback

REPORT CARD	
Reading	B
Writing	C-
Mathematics	D
Science	C-
History	B+
Art	B-
P.E.	B

Applications

- Online Advertising and Recommendation
- Clinical Trials
- Robotics
- Dynamic Pricing
- Search Engine Optimization
- Education and Learning Platforms



Problem formalism

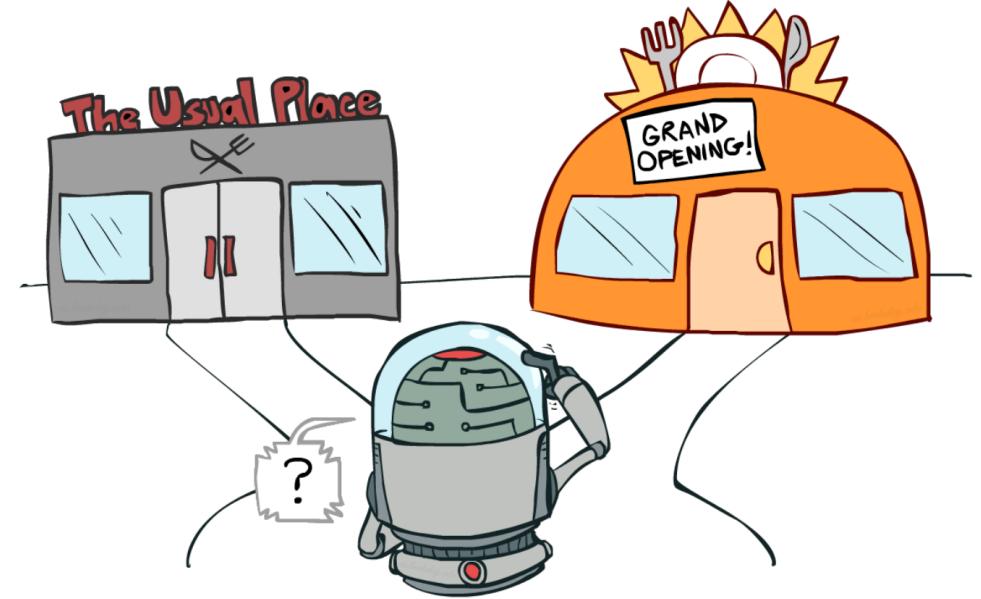
- Arms $\mathcal{A} = \{a_1, \dots, a_k\}$
 - Each arm is associated with an unknown reward distribution
- Rewards $r_t(a_i)$
- Possible Goals
 - Maximize cumulative reward (Minimize regret)
 - Best arm identification
- Standard Assumptions
 - Independence: Rewards from each arm are independent
 - Stationarity: Reward distributions don't change over time

How should we solve this problem?

Random

Greedy

Exploration



ϵ -Greedy

2.3 The 10-armed Testbed

To roughly assess the relative effectiveness of the greedy and ε -greedy action-value methods, we compared them numerically on a suite of test problems. This was a set of 2000 randomly generated k -armed bandit problems with $k = 10$. For each bandit problem, such as the one shown in Figure 2.1, the action values, $q_*(a)$, $a = 1, \dots, 10$,

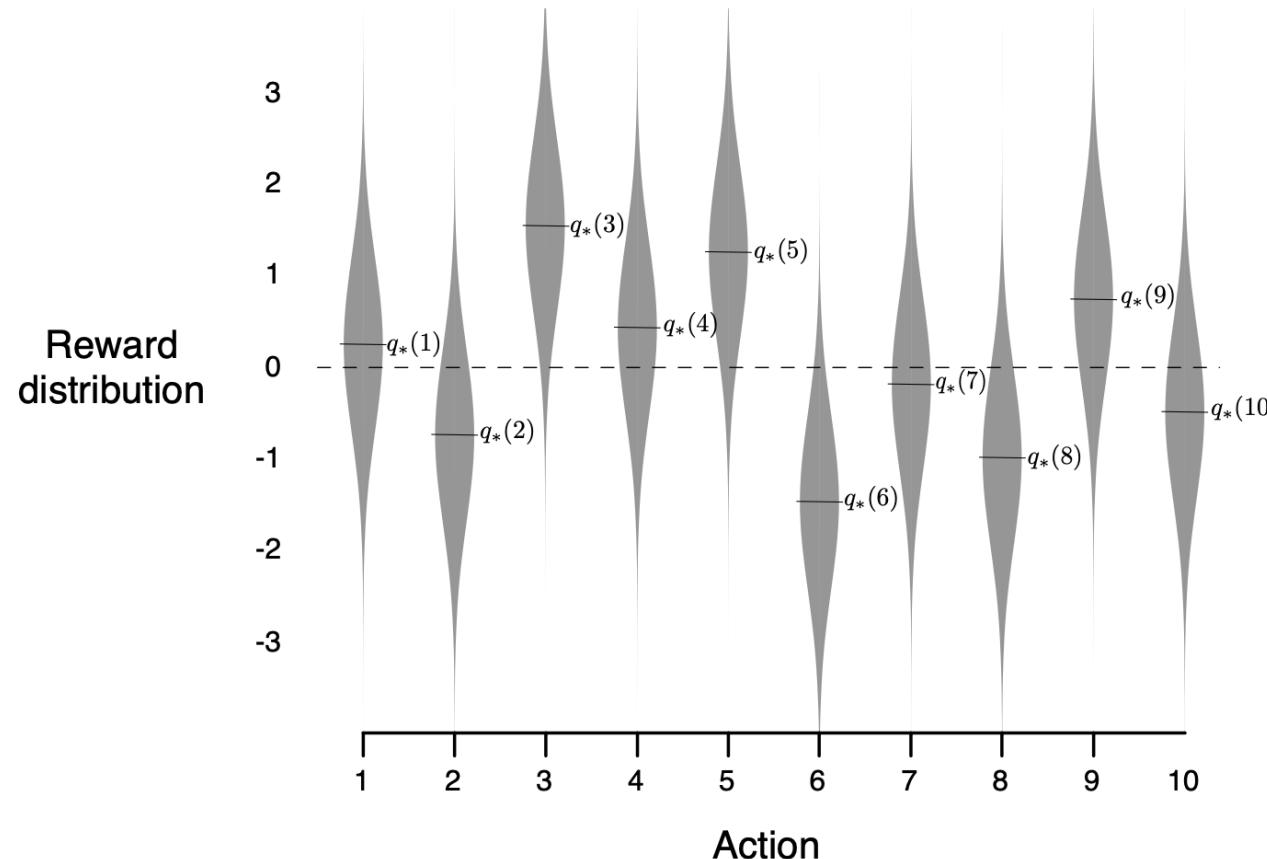
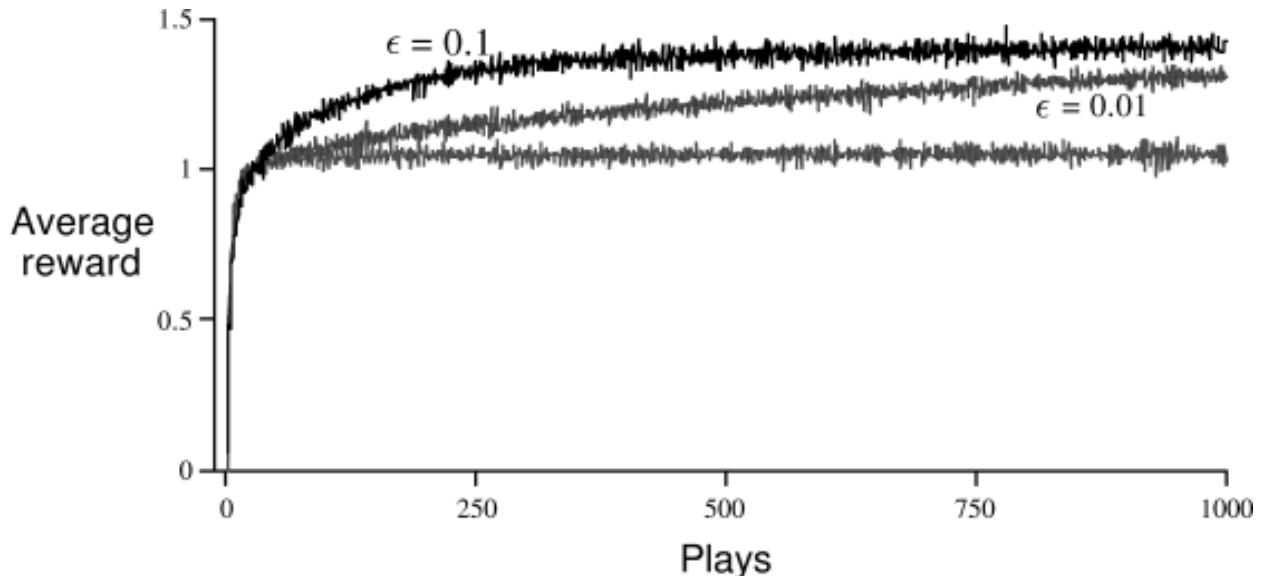
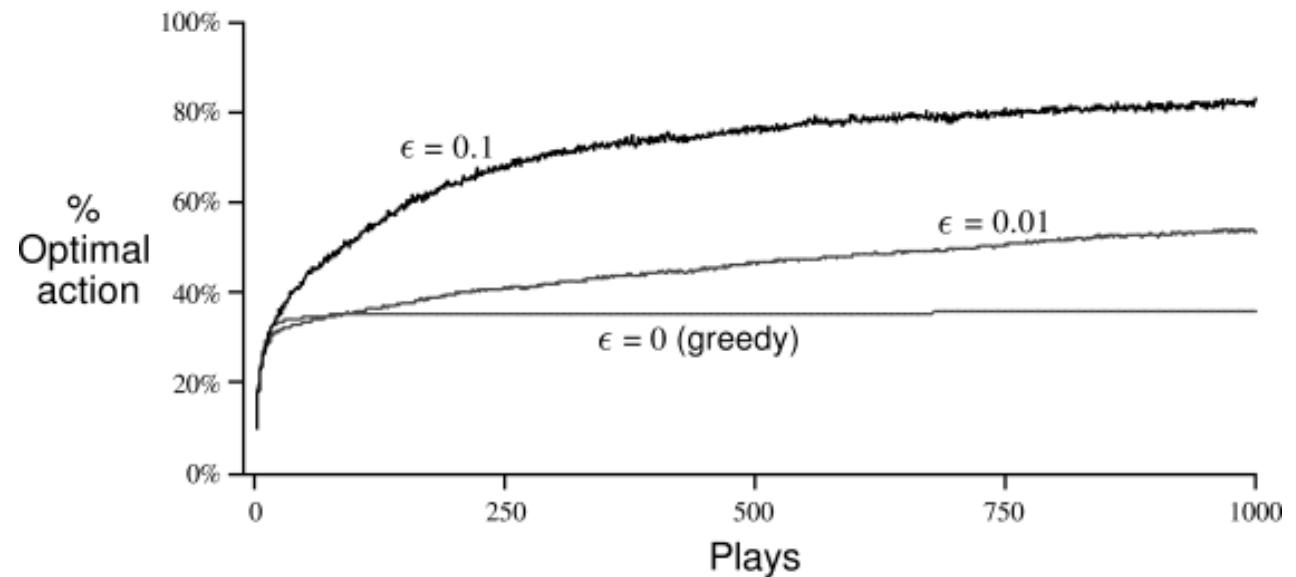


Figure 2.1: An example bandit problem from the 10-armed testbed. The true value $q_*(a)$ of each of the ten actions was selected according to a normal distribution with mean zero and unit variance, and then the actual rewards were selected according to a mean $q_*(a)$ unit variance normal distribution, as suggested by these gray distributions.

Sutton/Barto figure

- 10 arms
- Each arm has stochastic reward
 $r \sim N(Q^*(a), 1)$
- Averaged over 2000 bandit problems where each problem starts with $Q^*(a) \sim N(0,1)$ for all a



Problems?

Boltzmann (Softmax) Exploration

Chernoff-Hoeffding Inequality

- Let X be a random variable in the range $[0,1]$ and x_1, x_2, \dots, x_n be n independent and identically distributed samples of X .
- Let $\bar{X} = \frac{1}{n} \sum_i x_i$ (the empirical average)
- Then we have $P(\bar{X} \geq \mathbb{E}[X] + c) \leq e^{-2nc^2}$

Some fun math!

- $P(\bar{X} \geq \mathbb{E}[X] + c) \leq e^{-2nc^2}$
- Typically, we want to pick some kind of high confidence $1 - \delta$ such that we are very confident about our sample mean being close to the true expectation.
- If we want

$$P(\bar{X} \geq \mathbb{E}[X] + c) \leq \delta$$

What is c in terms of δ ?

More math

- We can pick δ to be whatever we want, so let's pick
- If we select $\delta = t^{-4}$

What is c ?

UCB1 (UCB = Upper Confidence Bound)

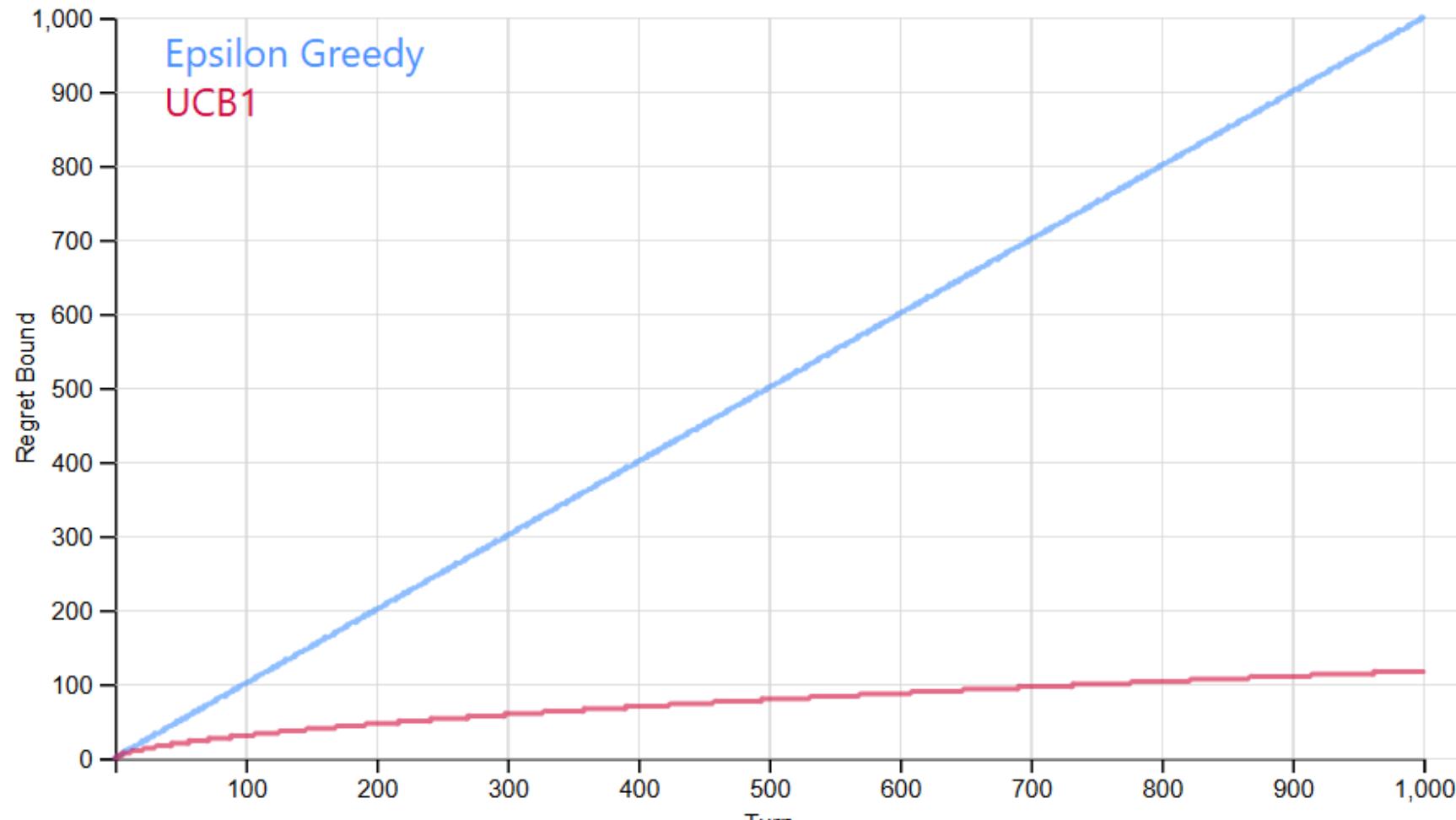
Key Idea: Optimism in the face of uncertainty

- Play each action once to get initial averages of arm values
- Keep track of counts of pulls for each arm n_i
- At each step t , select $\arg \max \bar{X}_i + c(i, t)$
 - Where $c(i, t) = \sqrt{\frac{2 \cdot \log(t)}{n_i}}$

Regret

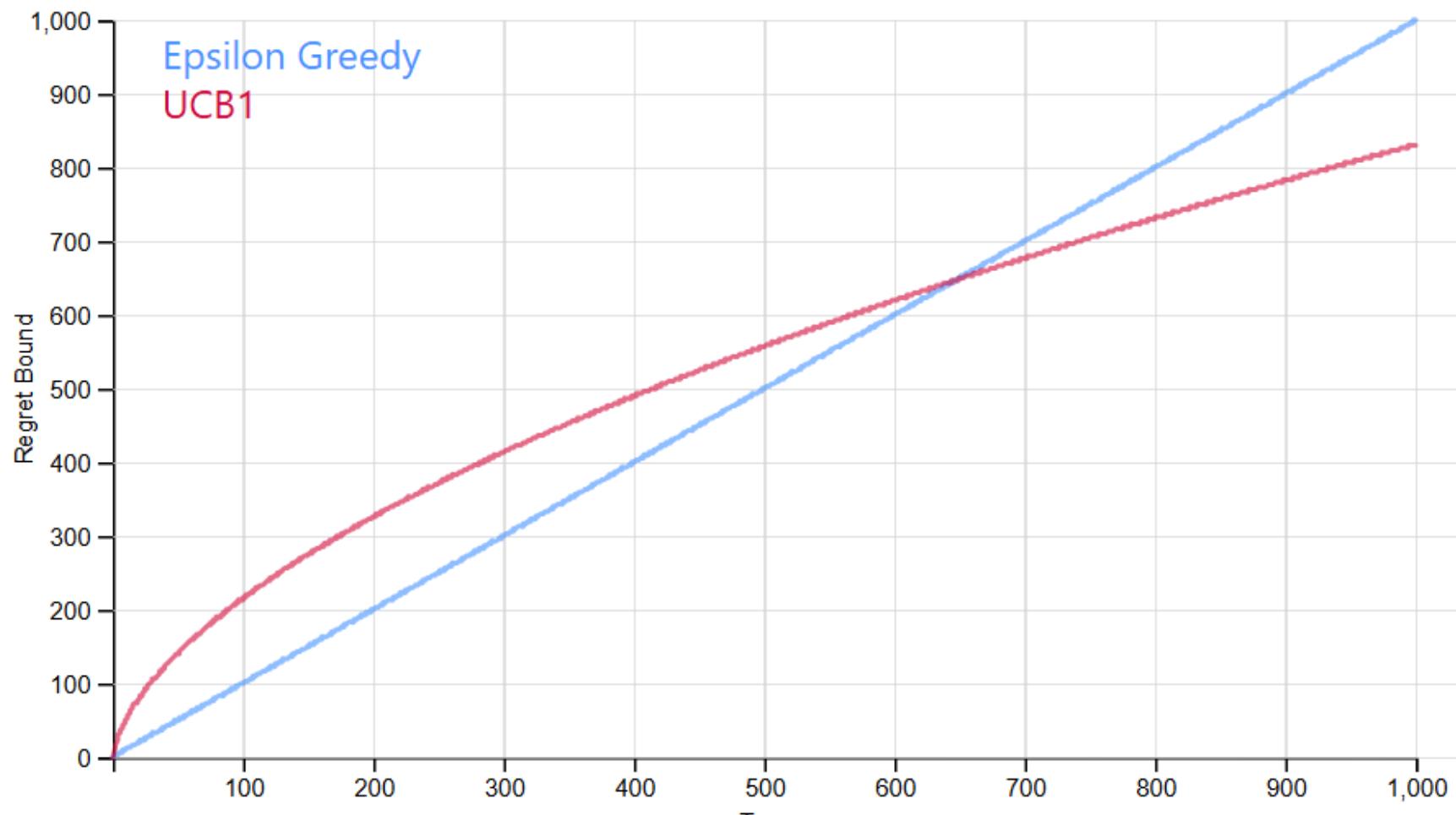
- Define μ^* as the maximum expected payoff over all k arms
- $\text{Regret}(T) = T\mu^* - \sum_{t=1}^T r_t$
- Epsilon-Greedy Regret
 - $O(T)$
- UCB1 Regret
 - $O(\sqrt{kT \log(T)})$
- A **No-Regret** algorithm is such that $\text{Regret}(T)/T \rightarrow 0$ as $T \rightarrow \infty$
 - Average regret goes to zero

Regret Bound vs. Turn



k (number of arms): T (number of steps):

Regret Bound vs. Turn



k (number of arms): T (number of steps):

Notes

- The version we derived is for rewards in range $[0,1]$
- What happens if rewards are in range $[a,b]$?
 - Just scale the upper confidence value

$$c(i, t) = (b - a) \sqrt{\frac{2 \cdot \log(t)}{n_i}}$$

In practice the scaling term is often just treated as a hyperparameter that controls exploration vs. exploitation.

$$c(i, t) = \alpha \sqrt{\frac{\log(t)}{n_i}}$$

Other Bandit Topics

- Thompson Sampling
- Best Arm Identification
- Adversarial Bandits
- Contextual Bandits
 - State information, s_t
 - Reward depends on state, and action
- Linear Bandits
 - Type of contextual bandit
 - Reward is a linear combination of state features.