

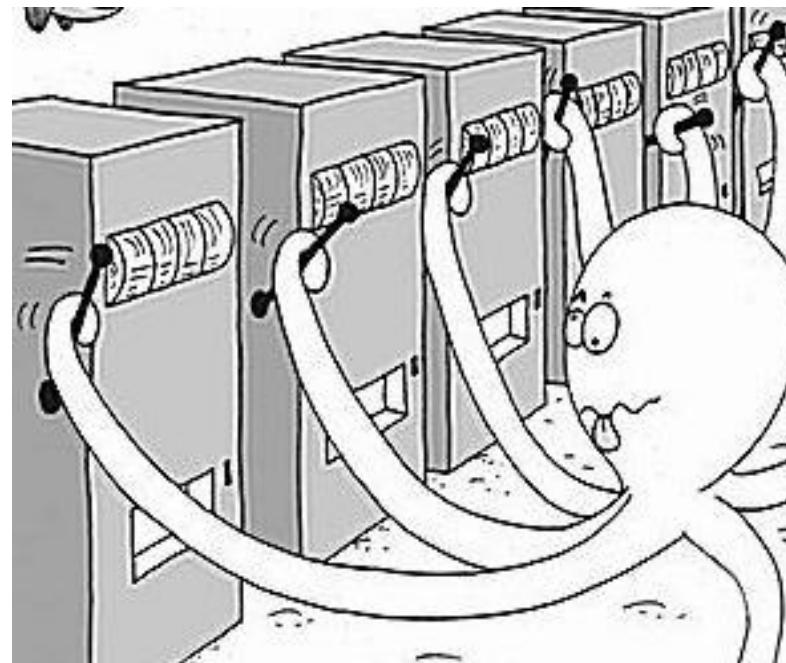
max Total Reward
min Ave Regret

$$A = \{1, \dots, n\} \quad r_a^* \sim \text{Distribution}$$

Multi-Armed Bandits

~~$$D = \mathbb{E}(s, a) \cdot \mathbb{E}(s, a)^T$$~~

Daniel Brown



Evaluative feedback

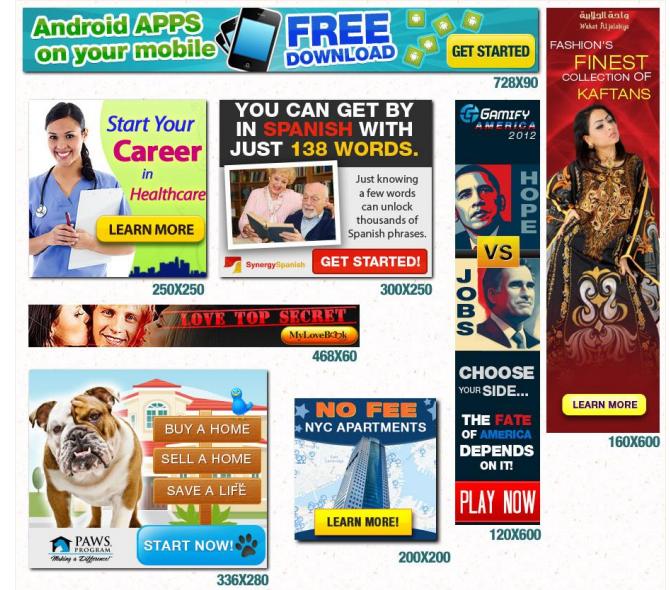
REPORT CARD	
Reading	B
Writing	C-
Mathematics	D
Science	C-
History	B+
Art	B-
P.E.	B

Applications

A? R?
 $\pi \rightarrow A$

- Online Advertising and Recommendation
- Clinical Trials
- Robotics
- Dynamic Pricing
- Search Engine Optimization
- Education and Learning Platforms

$MAB \rightarrow$ Contextual Bandit



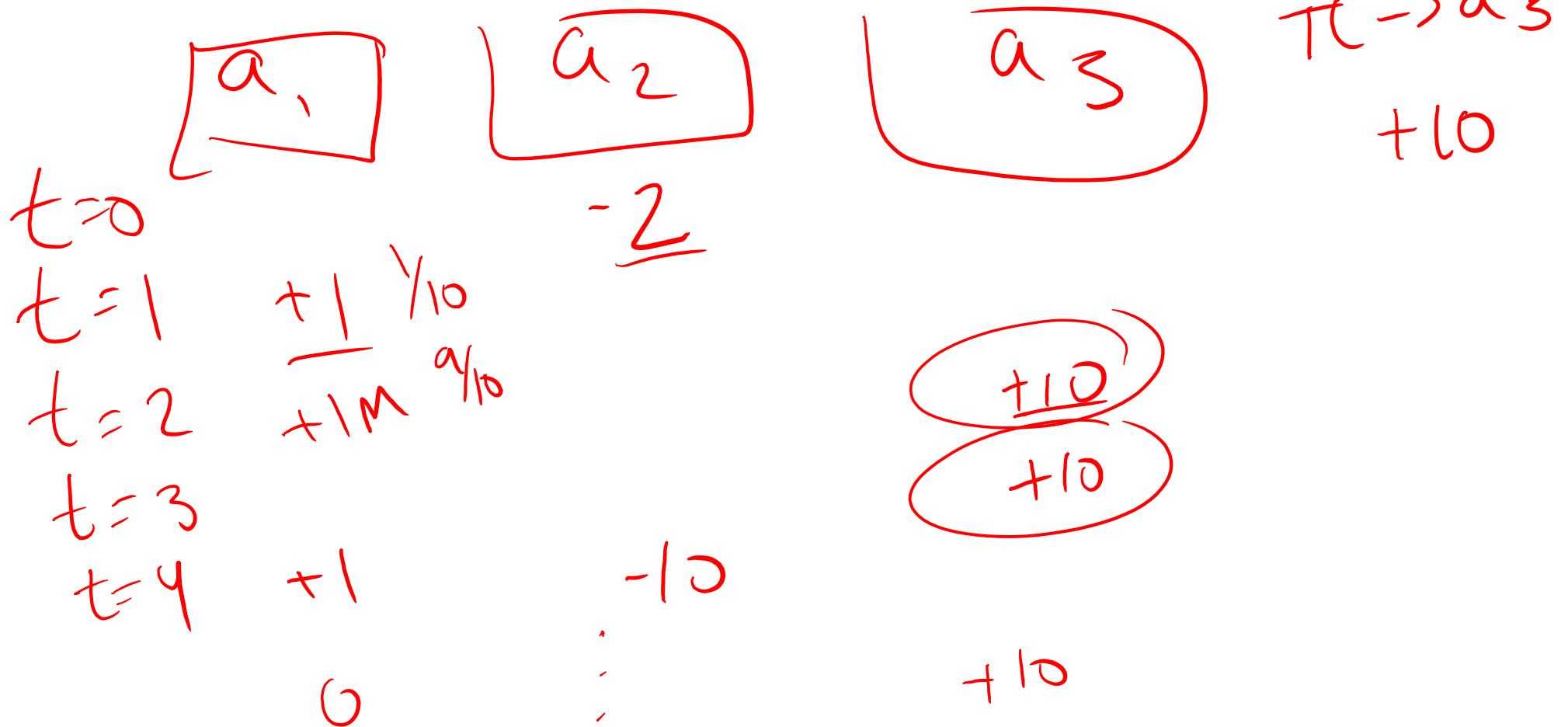
Problem formalism

Actions

- Arms $\mathcal{A} = \{a_1, \dots, a_k\}$
 - Each arm is associated with an unknown reward distribution
- Rewards $r_t(a_i)$ - $E[r(a_i)] = \mu_{a_i}$
- Possible Goals
 - Maximize cumulative reward (Minimize regret)
 - Best arm identification
- Standard Assumptions
 - Independence: Rewards from each arm are independent
 - Stationarity: Reward distributions don't change over time

\hookrightarrow if visited $\epsilon \geq 0.1$

How should we solve this problem?

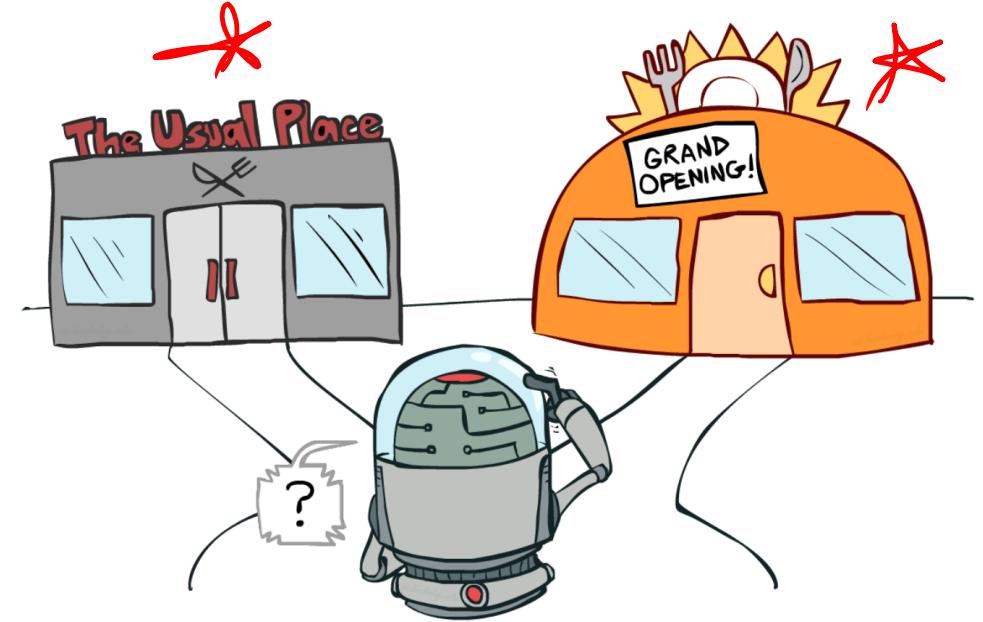


Random

Big Regret

Greedy

Exploration



ϵ -Greedy

$\epsilon \in (0, 1)$ e.g. 0.1, 0.05, 0.01

* anneal/reduce/decay
 ϵ overtime

loop:

rand $\epsilon [0, 1]$

random {
· rand $< \epsilon$:
 explore action at random

greedy {
· else:
 act greedy

2.3 The 10-armed Testbed

To roughly assess the relative effectiveness of the greedy and ε -greedy action-value methods, we compared them numerically on a suite of test problems. This was a set of 2000 randomly generated k -armed bandit problems with $k = 10$. For each bandit problem, such as the one shown in Figure 2.1, the action values, $q_*(a)$, $a = 1, \dots, 10$,

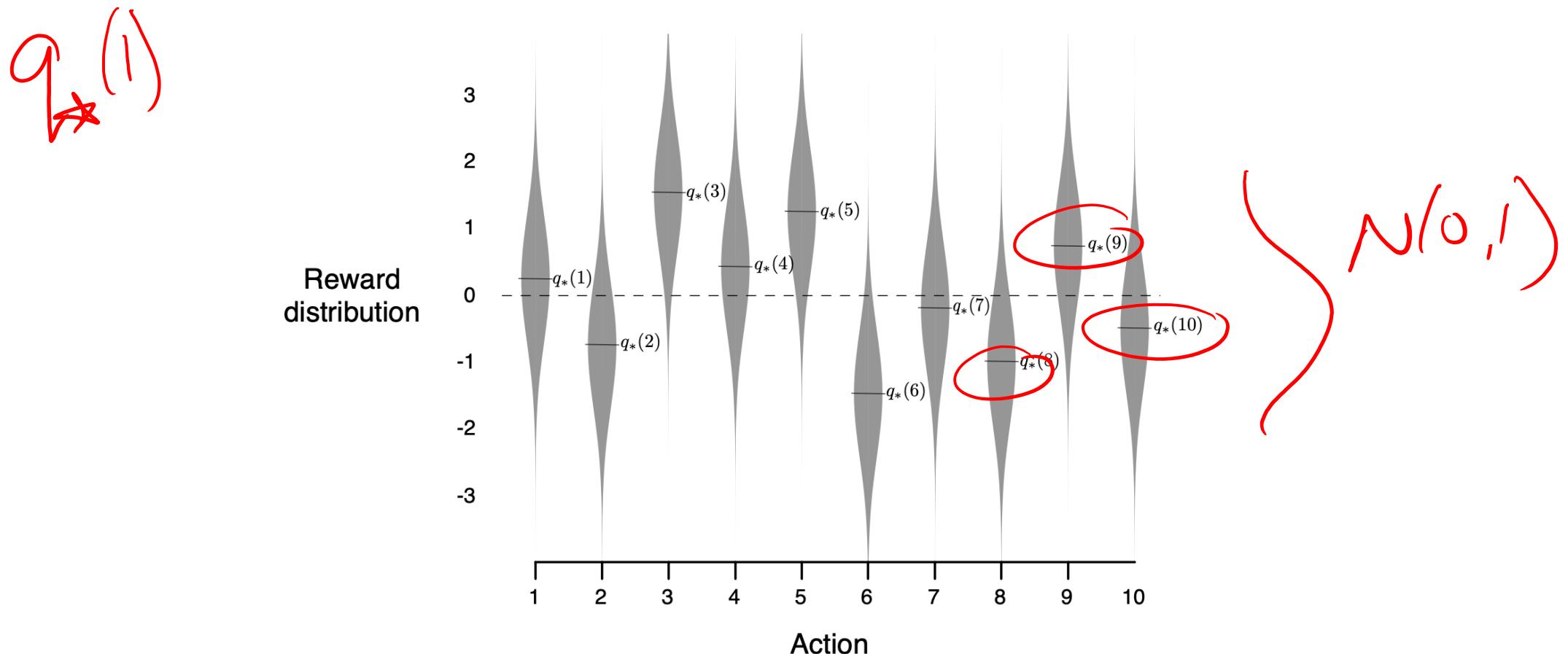


Figure 2.1: An example bandit problem from the 10-armed testbed. The true value $q_*(a)$ of each of the ten actions was selected according to a normal distribution with mean zero and unit variance, and then the actual rewards were selected according to a mean $q_*(a)$ unit variance normal distribution, as suggested by these gray distributions.

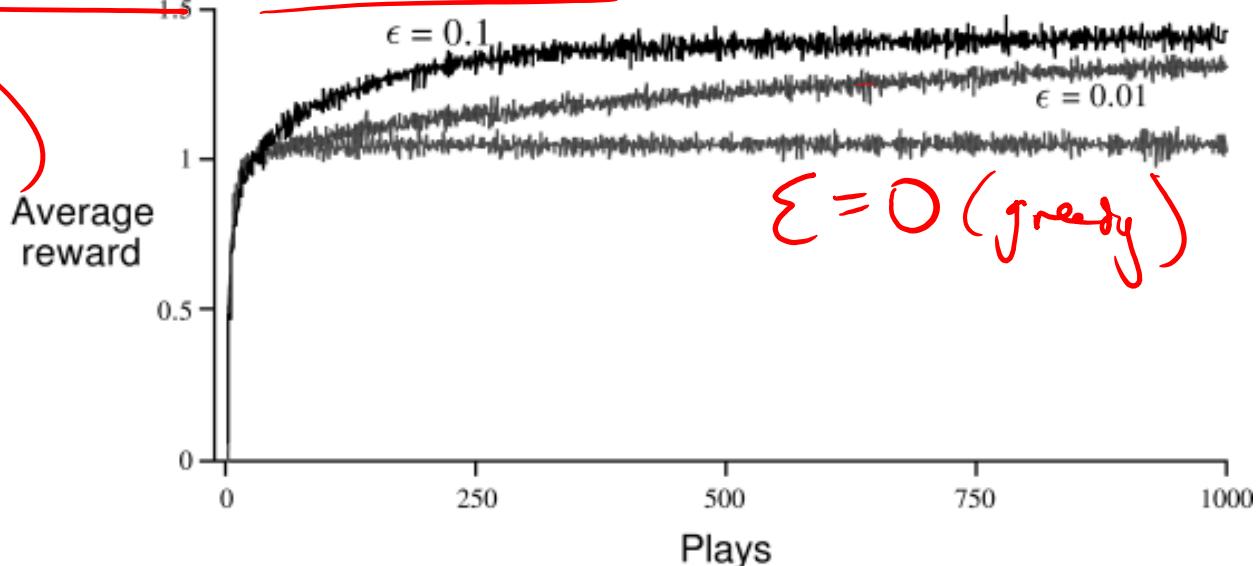
Sutton/Barto figure

- 10 arms
- Each arm has stochastic reward
- Averaged over 2000 bandit problems where each problem starts with $Q^*(a) \sim N(0,1)$ for all a

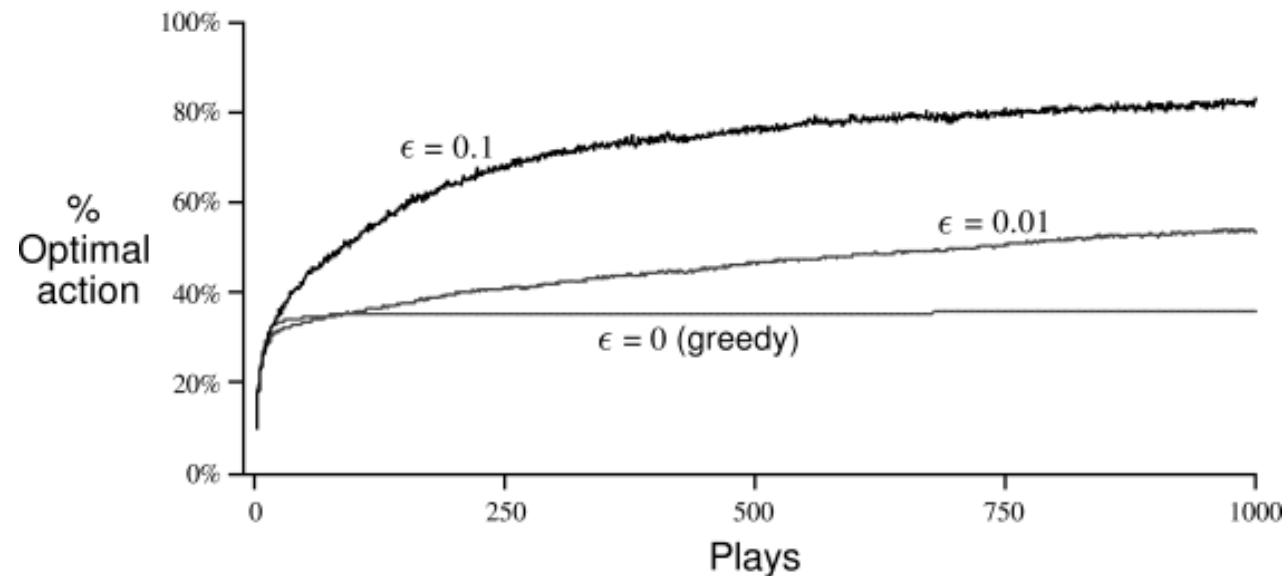
$$N(0,1) \quad N(-0.2,1) \quad N(1.5,1)$$

$$s \sim N(a, b)$$

$$r \sim N(0, 1)$$



$$\epsilon = 0 \text{ (greedy)}$$



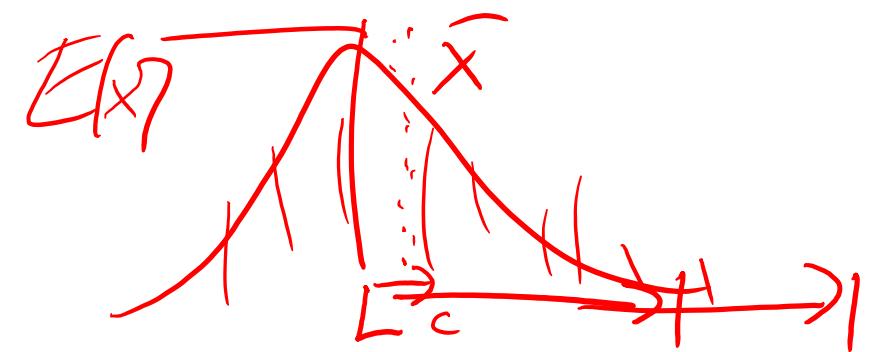
Problems?

E?

Boltzmann (Softmax) Exploration

$$\Pr(a) = \frac{e^{\beta \hat{Q}(a)}}{\sum_{a' \in A} e^{\beta \hat{Q}(a')}}$$

Chernoff-Hoeffding Inequality



- Let X be a random variable in the range $[0, 1]$ and x_1, x_2, \dots, x_n be n independent and identically distributed samples of X .
- Let $\bar{X} = \frac{1}{n} \sum_i x_i$ (the empirical average) $\hat{Q}(a)$
- Then we have $P(\bar{X} \geq \mathbb{E}[X] + c) \leq e^{-2nc^2}$

Some fun math!

- $P(\bar{X} \geq \mathbb{E}[X] + c) \leq e^{-2nc^2}$
- Typically, we want to pick some kind of high confidence $1 - \delta$ such that we are very confident about our sample mean being close to the true expectation.
- If we want

$$P(\bar{X} \geq \mathbb{E}[X] + c) \leq \delta$$

What is c in terms of δ ?

$$\delta = e^{-2nc^2}$$
$$\frac{\log \delta}{-2n} = c$$

0.61

More math

- We can pick δ to be whatever we want, so let's pick
- If we select $\delta = t^{-4}$

What is c ?

$$c = \sqrt{\frac{\log s}{-2n}}$$

$t > 0$ $s > 0$ $\frac{1}{t^4}$

$$= \sqrt{\frac{\log t^{-4}}{-2n}} = \sqrt{\frac{-4 \log t}{-2n}}$$
$$= \sqrt{\frac{2 \log t}{n}}$$

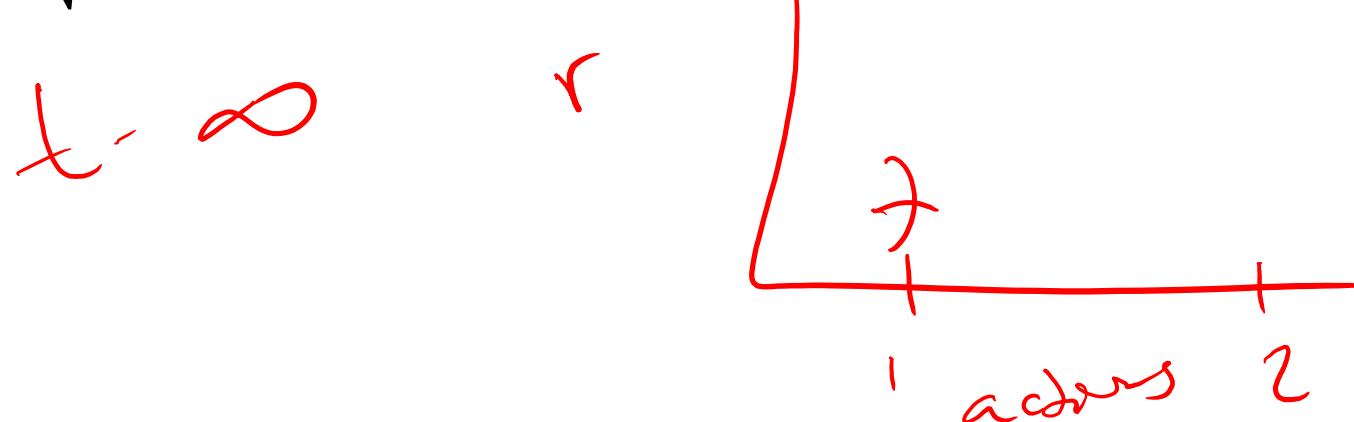
UCB1 (UCB = Upper Confidence Bound)

Key Idea: Optimism in the face of uncertainty

- Play each action once to get initial averages of arm values
- Keep track of counts of pulls for each arm n_i
- At each step t , select $\arg \max_i \bar{X}_i + c(i, t)$

$$\text{Where } c(i, t) = \sqrt{\frac{2 \cdot \log(t)}{n_i}}$$

$t = \text{total}$
 # actions



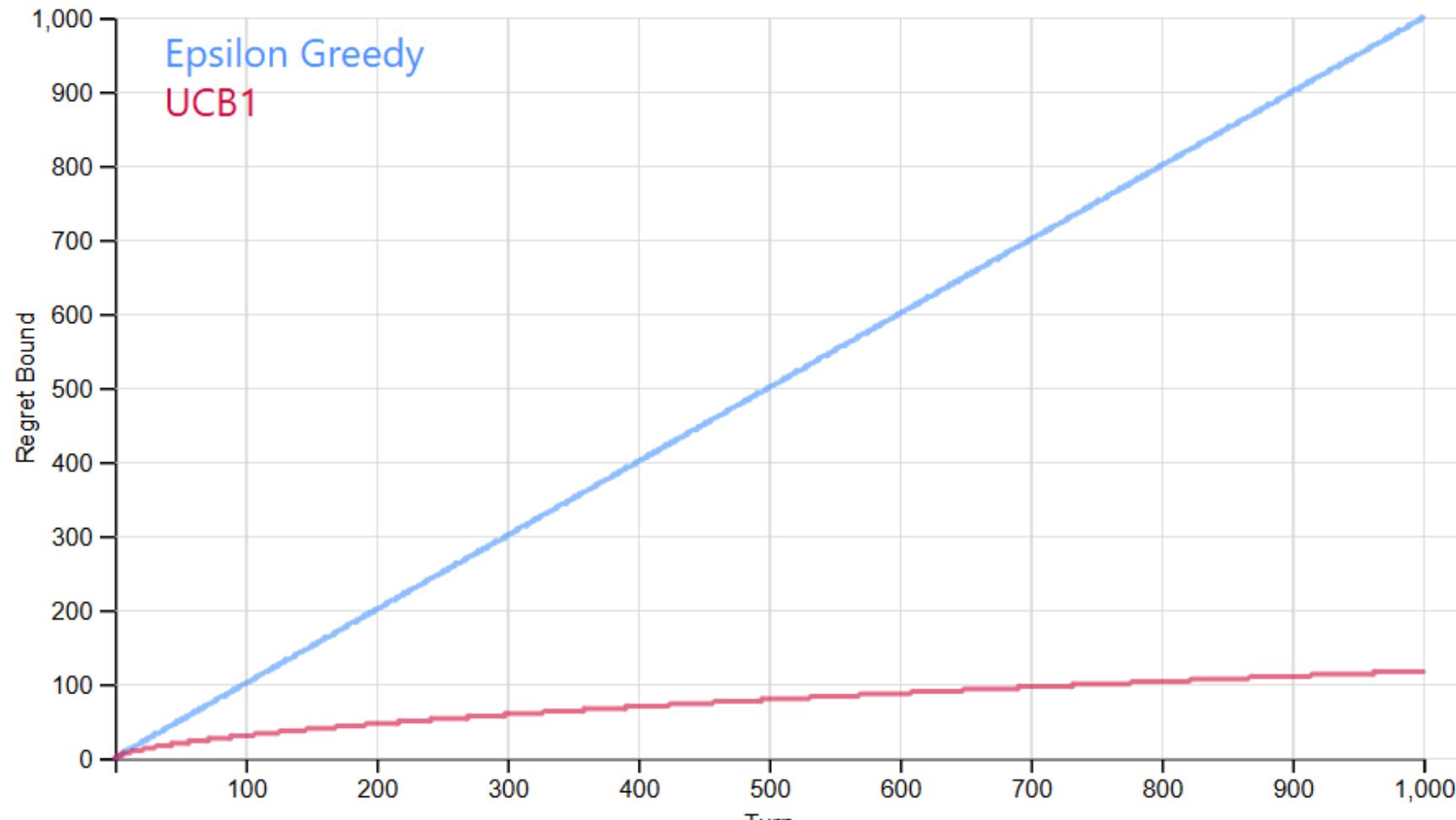
Regret

- Define μ^* as the maximum expected payoff over all k arms
- $\text{Regret}(T) = T\mu^* - \sum_{t=1}^T r_t$
- Epsilon-Greedy Regret
 - $O(T)$
- UCB1 Regret
 - $O(\sqrt{kT \log(T)})$
- A **No-Regret** algorithm is such that $\text{Regret}(T)/T \rightarrow 0$ as $T \rightarrow \infty$
 - Average regret goes to zero

fixed ϵ

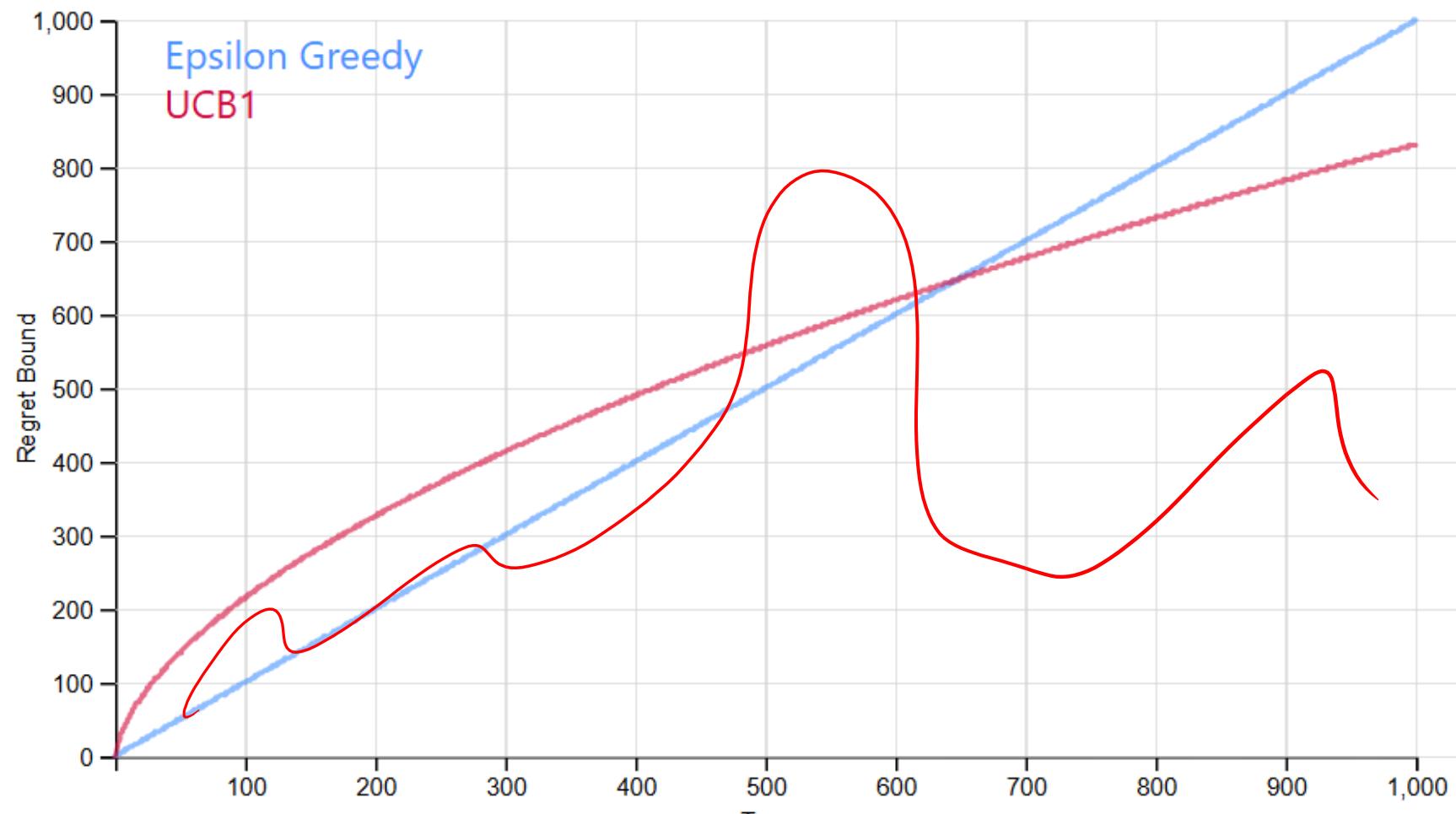
$K = \# \text{arms}$
 $K \ll T$

Regret Bound vs. Turn



k (number of arms): T (number of steps):

Regret Bound vs. Turn



k (number of arms): T (number of steps):

Notes

- The version we derived is for rewards in range $[0,1]$
- What happens if rewards are in range $[a,b]$?
 - Just scale the upper confidence value

$$c(i, t) = (b - a) \sqrt{\frac{2 \cdot \log(t)}{n_i}}$$

In practice the scaling term is often just treated as a hyperparameter that controls exploration vs. exploitation.

$$c(i, t) = \alpha \sqrt{\frac{\log(t)}{n_i}}$$

What problems do we have with vanilla MAB?

~~Background Assumptions~~

- stationarity
- no state/context/obs

Contextual Bandits

- **High-level definition**

At each round t :

- Observe **context** x_t
- Choose action $a_t \in \{1, \dots, K\}$
- Observe reward $r_t(a_t, x_t)$

MAB
no context

$$r_t(a_t)$$

Each arm has a context-dependent reward function:

$$\mathbb{E}[r \mid x, a] = f_a(x)$$

LinUCB

$$\begin{array}{c} x_0, a_0, r_0(a_0, x_0) \\ \cancel{x_1, a_1, r_1(a_1, x_1)} \\ x_2, a_0, r_2(a_0, x_2) \end{array}$$

$$x \rightarrow y$$
$$x \rightarrow r$$

- **Assumption**

- For each arm a :
- Reward is linear in features
- Separate parameter vector per arm

$$\mathbb{E}[r | x, a] = x^\top \theta_a$$

$$\mathcal{D}_a = \left\{ (x, r) \dots \right. \\ \left. \theta_a^\top x \rightarrow r_a \right.$$

- How should we choose arms (actions) given a context vector x ?

- We can maintain one linear regression model per arm
- Plus uncertainty (e.g. upper confidence bound)

$$\theta_{a_1}^\top x \rightarrow r_{a_1}$$

$$\theta_{a_N}^\top x \rightarrow r_{a_N}$$

Aside: Linear Regression

- Model assumption

$$y = x^\top \theta + \varepsilon$$

- Closed form solution

$$\hat{\theta} = (X^\top X)^{-1} X^\top \vec{y}$$

$$\cancel{X^\top} \vec{y} = \cancel{X^\top} X \hat{\theta}$$

$$(X^\top X)^{-1} X^\top \vec{y} = \hat{\theta}$$

$$(x_0, y_0) \\ (x_1, y_1) \\ \vdots \\ (x_N, y_N)$$

$$\vec{y} = \begin{bmatrix} y_0 \\ \vdots \\ y_N \end{bmatrix}$$

$$y = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \\ i \end{bmatrix} \quad N > d$$

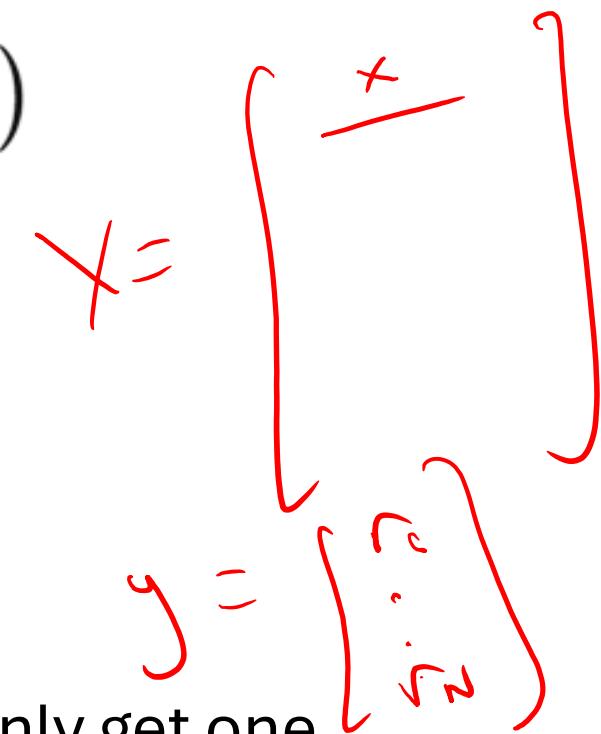
$$X = \begin{bmatrix} -x_1 & - \\ -x_2 & - \\ \vdots & \\ -x_N & - \end{bmatrix}$$

Ridge Regression (adds L2 regularization)

$$\hat{\theta} = \arg \min_{\theta} (\|X\theta - y\|^2 + \lambda\|\theta\|^2)$$

- Also has a closed form solution:

$$\hat{\theta} = (X_a^\top X_a + \lambda I)^{-1} X_a^\top y_a$$



- How would you solve this in an online way? E.g., you only get one sample (x_t, y_t) at each timestep and you want to iteratively update θ

We want something like this but that can be updated as we get new data

$$\hat{\theta} = \underbrace{(X^\top X + \lambda I)^{-1}}_{A} \underbrace{X^\top y}_{b}$$

We can write $\hat{\theta} = A^{-1}b$

At each time t you observe (x_t, y_t)

What is A_t and b_t such that we can estimate θ given the data so far?

$$X = \begin{bmatrix} x_1 & y_1 & t_1 \\ \vdots & \vdots & \vdots \\ x_t & y_t & t_t \end{bmatrix}$$

$$A_t = \lambda I + \sum_{s=1}^t x_s x_s^\top + x_{t+1} x_{t+1}^\top$$

$$b_t = \sum_{s=1}^t y_s x_s + y_{t+1} x_{t+1}$$

$$\hat{\theta} = A_t^{-1} b_t$$

Quiz Answer: D

LinUCB

$$\theta_a$$

- Optimism in the face of uncertainty in ***function space***.

LinUCB = online ridge regression + optimism via confidence ellipsoids

LinUCB Algorithm

Assumption

For each arm $a \in \{1, \dots, K\}$:

$$\mathbb{E}[r \mid x, a] = x^\top \theta_a$$

For rounds $t = 1, 2, \dots$

Observe context

$$x_t \in \mathbb{R}^d$$

For each arm a :

$$\hat{\theta}_a = A_a^{-1} b_a$$

$$\text{UCB}_a(x_t) = x_t^\top \hat{\theta}_a + \alpha \sqrt{x_t^\top A_a^{-1} x_t}$$

Select arm

$$a_t = \arg \max_a \text{UCB}_a(x_t)$$

Initialization

For each arm a :

$$A_a \leftarrow \lambda I_d \quad b_a \leftarrow 0_d$$

Observe reward

$$r_t \in \mathbb{R}$$

Update (chosen arm only)

$$A_{a_t} \leftarrow A_{a_t} + x_t x_t^\top$$

$$b_{a_t} \leftarrow b_{a_t} + r_t x_t$$

LinUCB

- LinUCB puts confidence ellipsoids on models!
- Works really well in practice!
- Very data efficient.
- Has been used heavily in production systems (ads, recommendations, etc)

(x, a, r)

Modern, Deep Learning Approaches

- Neural Contextual Bandits

- Replace linear model with neural network
- Train online from feedback
- Figuring out good exploration/uncertainty is challenging

$$\theta_a^T x$$

$$r \approx f_\theta(x, a)$$

x, a, r

$$f_{\theta_2}(x, a)$$

a_n

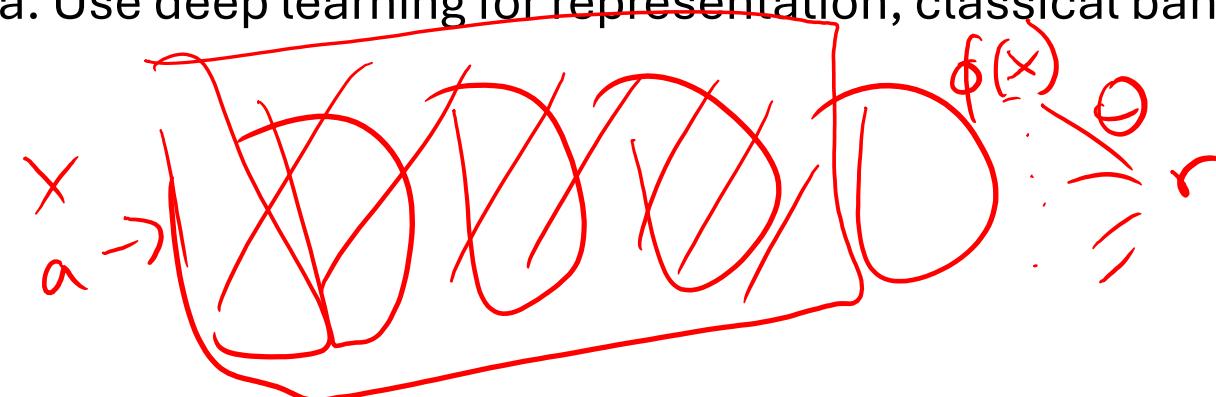
$$f_{\theta_3}(x, a)$$

$$\text{argmax } F_\theta(x, a) + \text{var}$$

- Uncertainty via approximations

- Ensembles
- NeuralUCB (linear UCB on last-layer features)

- Key idea: Use deep learning for representation, classical bandits for exploration.



Transitioning to Reinforcement Learning

- At what point does a contextual bandit become full reinforcement learning?

$$R_t = \sum_{t=0}^T r_t$$

$a \rightarrow x \xrightarrow{a} x$