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Applications
TN

* Online Advertising and Recommendation
* Clinical Trials

e Robotics
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Problem formalism
Ak~
* Arms A = {aq, ..., ax}
e Each arm is associated with an unknown reward distribution

* Rewards r:(a;) —~ Z?CE ((a )| = Mo,

* Possible Goals
* Maximize cumulative reward (Minimize regret)

e Best arm identification

* Standard Assumptions
* Independence: Rewards from each arm are independent
* Stationarity: Reward distributions don’t change over time
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How should we solve this problem?
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2.3 The 10-armed Testbed

To roughly assess the relative effectiveness of the greedy and e-greedy action-value
methods, we compared them numerically on a suite of test problems. This was a set
of 2000 randomly generated k-armed bandit problems with k¥ = 10. For each bandit
problem, such as the one shown in Figure 2.1, the action values, g.(a), a = 1,...,10,
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Figure 2.1: An example bandit problem from the 10-armed testbed. The true value g«(a) of
each of the ten actions was selected according to a normal distribution with mean zero and unit
variance, and then the actual rewards were selected according to a mean g.(a) unit variance
normal distribution, as suggested by these gray distributions.
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Problems?



Boltzmann (Softmax) Exploration



Chernoff-Hoeffding Inequality

- CE
* Let Xbe arandom variable in the range [0,1] and x¢, x5, ..., X,; be n
independent and identically distributed samples of X.

e LetX = %Zixi (the empirical average) &(ﬂ>
- Then we have P(X = E[X] + ¢) < e~2n¢”
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+ P(X = E[X] +¢) < e72n¢

* Typically, we want to pick some kind of high confidence 1 — 6
such that we are very confident about our sample mean being
close to the true expectation.

e |f we want ~ b“
PX=E[X]+c)<$6
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* We can pick 0 to be whatever we want, so let’s pick
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More math




UCB1 (UCB = Upper Confidence Bound)

Key Idea: Optimism in the face of uncertainty
* Play each action once to get initial averages of arm values

* Keep track of counts of pulls for each arm n; J(; j\) §w\ R
* At each step t, select arg m{lx)?i + c(i, t) ¥ i o™
« Where c(i,t) = /z'li‘?(t)
L=< \f




Regret

* Define u*as the maximum expected payoff over all k arms

» Regret(T) =Tu* — X{_17¢

S
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 Epsilon-Greedy Regret Q%A A é[(
. 0(T)
* UCB1 Regret

+ 0(/kTlog(T))

* ANo-Regret algorithm is such that Regret(T)/T - 0asT — o
* Average regret goes to zero



Regret Bound vs. Turn
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k (number of arms): 1" (number of steps):

https://csed442-17f.github.io/LinUCB/



Regret Bound vs. Turn
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https://csed442-17f.github.io/LinUCB/



Notes

* The version we derived is for rewards in range [0,1]

* What happens if rewards are in range [a,b]?
* Just scale the upper confidence value

: 2:-log(t)
c(i,t) =(b—a
(i, t) = ( N
In practice the scaling term is often just treated as a
hyperparameter that controls exploration vs. exploitation.

c(it) = a \/log(t)
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What problems do we have with vanilla MAB?
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Contextual Bandits /”1 NS

|
‘e r
* High-level definition RN £or

At each round t:
* Observe context x; r{/<mb
* Choose actiona; € {1’ ... K}
* Observe reward r:(a; x;)

Each arm has a context-dependent reward function:

ir | z,a] = fa(z)
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* Assumption

. l
e Foreach arm a: 4[5”‘:3 ﬂ*]:m 0., %

* Reward is linear in features

 Separate parameter vector per arm /9 é Q%
o x5

* How should we choose arms (actions) given a context vector x?
* We can maintain one linear regression model per arm a - (0\7’
* Plus uncertainty (e.g. upper confidence bound) OQ1

O”V. y = o
N



Aside: Linear Regression
AN

* Model assumption
P y = JTTQ +e

e Closed form solution
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Ridge Regression (adds L2 regularization)

5:argmﬁin(HX9—yH2 + A[16]1%) \ .

 Also has a closed form solution: \%/

\

0= (XX +M)"'Xy,_
g
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* How would you solve this in an online way? E.g., you only get one
sample (x;, y¢) at each timestep and you want to iteratively update 6




I =
We want something like this butthat 5 v T v 1T
can be updated as we get new data 0 = (X X + AI) X

=
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t
We can write § = A™1b \ﬁ, A, = M\ + stmz + Ree N

At each time t you observe

(xt'yt) = t
bf — Zysms “' \j&&\ \(Jc“\

What is 4; and b; such that we - s=1
can estimate 0 given the data so
far? 1

Quiz Answer: D



LinUCB 69

* Optimism in the face of uncertainty in function space.

LinUCB = online ridge regression + optimism via confidence ellipsoids




LinUCB Algorithm

Assumption Initialization >\i D

Foreacharma € {1,...,K}: For each arm a:

E[r | z,a] =26, Ay < Ay ba < 04

Forroundst =1,2,...

Observe context

d
ze € R Observe reward
For each arm a:
. r, € R
0, = A 'b, t
) Update (chosen arm only)
UCB,(z;) = =, 0, + ar/z] A 1z,

-
A, +— A, + xz,
Select arm

bo, < ba, + T T4
a; = argmax UCB,(x;)



LinUCB

* LinUCB puts confidence ellipsoids on models!

* Works really well in practice!

* Very data efficient.

* Has been used heavily in production systems (ads,
recommendations, etc)
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Modern, Deep Learning Approaches

H'x

* Neural Contextual Bandits

. . KA
* Replace linear model with neural network 7 = fg(m a) -
* Train online from feedback /C&z (X 0\3 0‘\“
* Figuring out good exploration/uncertainty is challenging } (7( X
* Uncertainty via approximations e ¥ T}
* Ensembles l\ -+ \‘O\r

* NeuralUCB (linear UCB on last-layer features)
* Keyidea: Use deeplearnln for representation, clas calbandltsforexploratlon
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Transitioning to Reinforcement Learning

* At what point does a contextual bandit become full reinforcement
learning? T
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