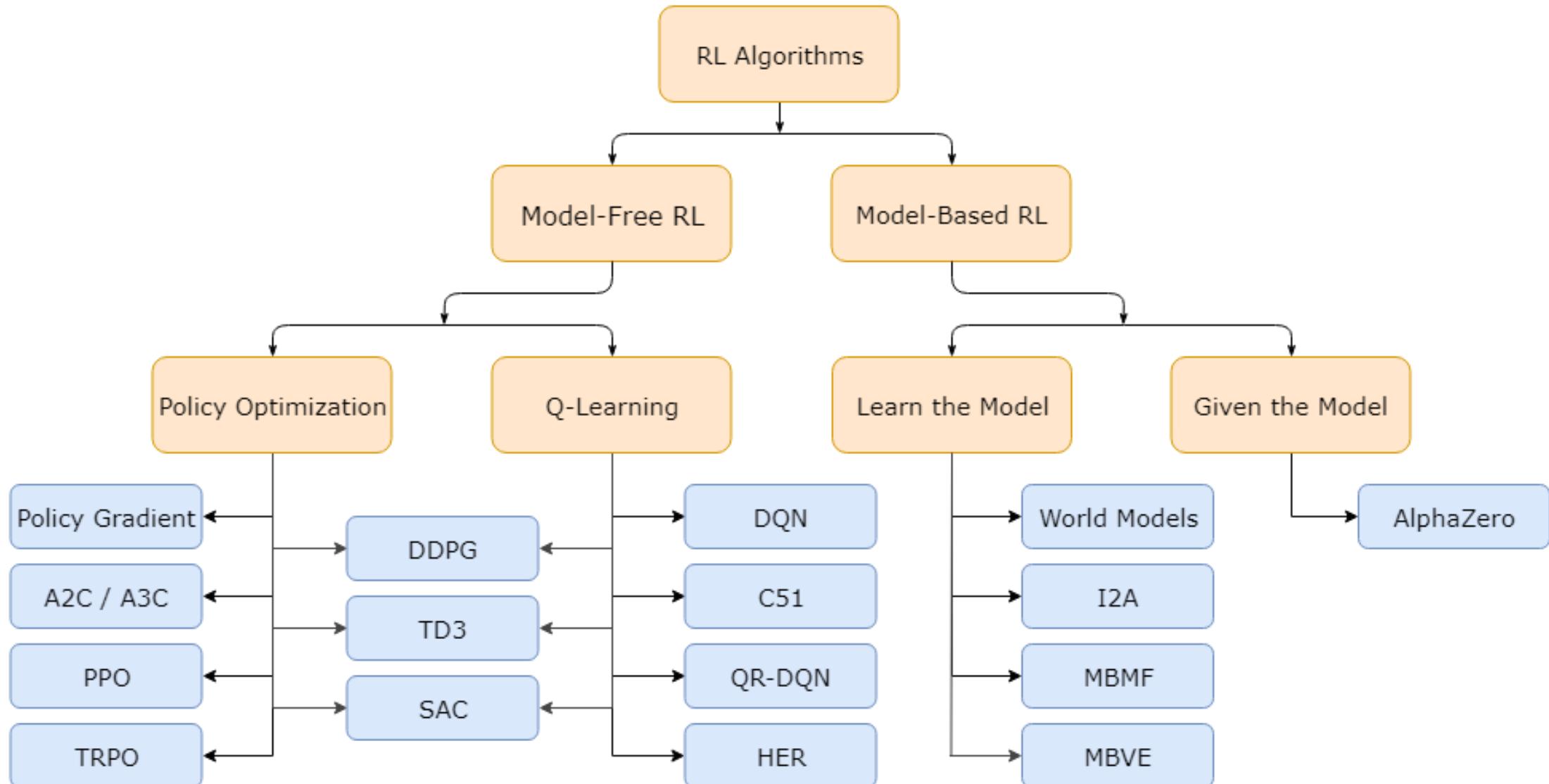
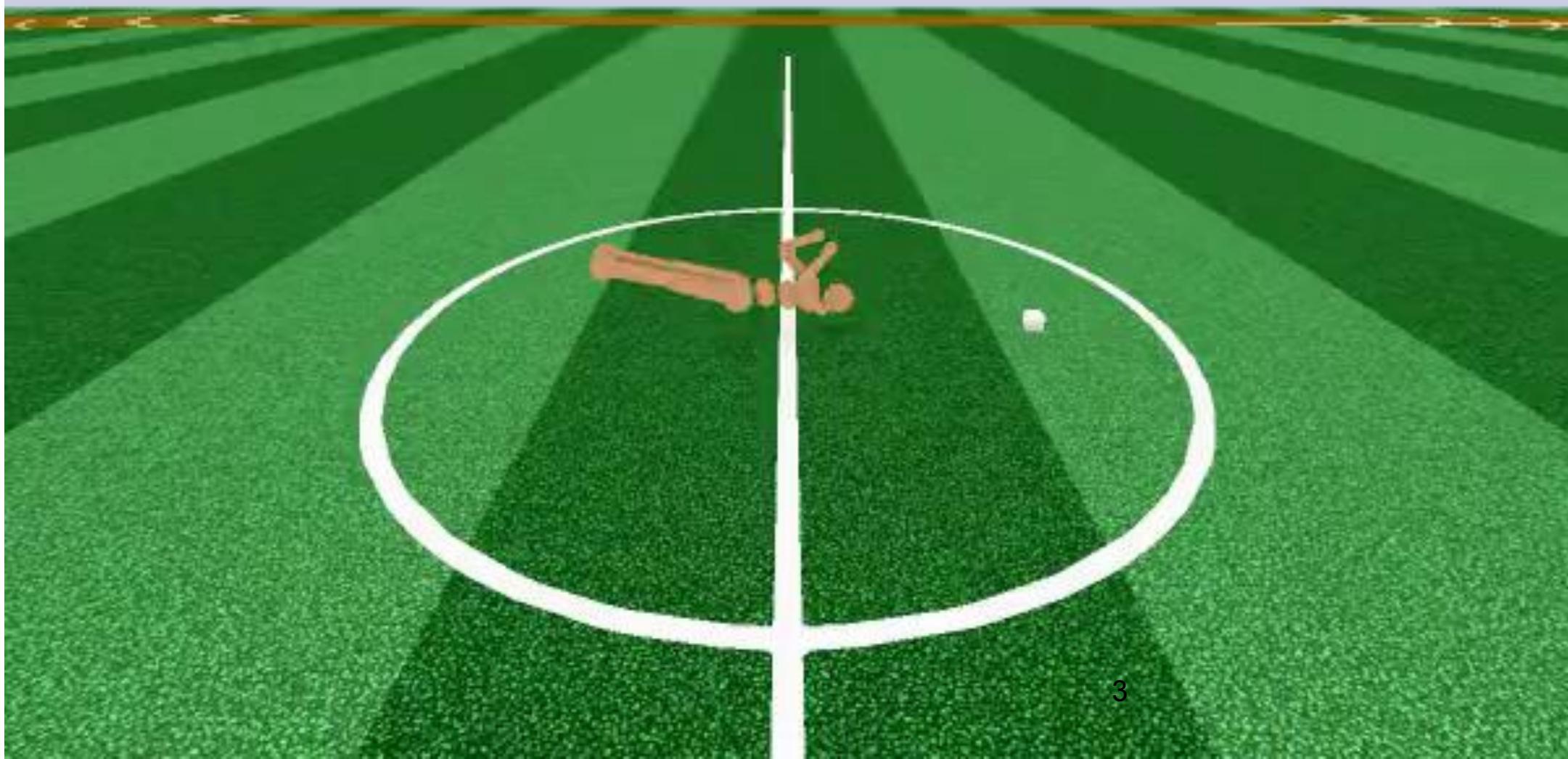


Policy Gradients

Daniel Brown --- University of Utah

Rough Taxonomy of RL Algorithms





What is the goal of RL?

- Find a policy that maximizes expected utility (discounted cumulative rewards)

$$\pi^* = \operatorname{argmax}_{\pi} E_{\pi} \left[\sum_{t=0}^{\infty} \gamma^t R(s, \pi(s), s') \right]$$

Two approaches to model-free RL

- **Learn Q-values**

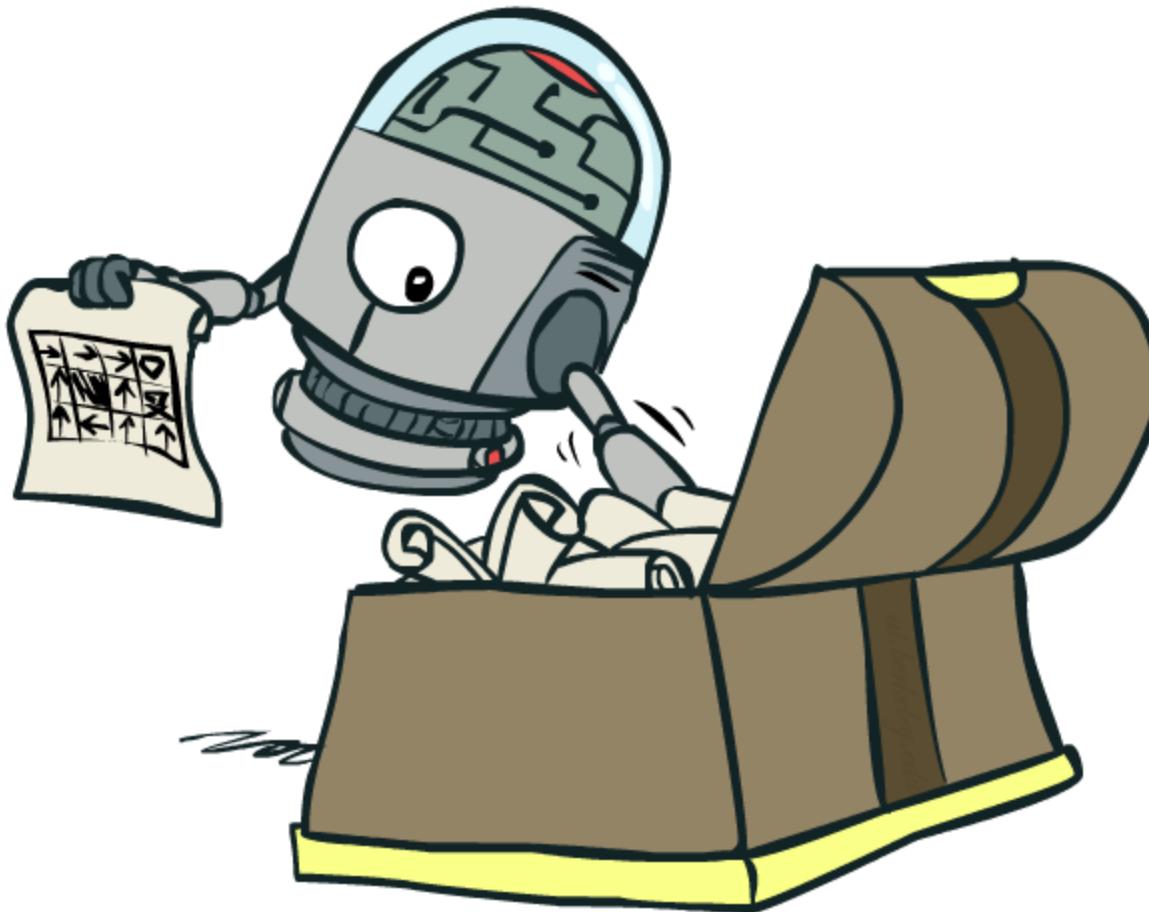
- Trains Q-values to be consistent. Not directly optimizing for performance.
- Use an objective based on the Bellman Equation

$$Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]$$

- **Learn Policy Directly**

- Have a parameterized policy π_θ
- Update the parameters θ to optimize performance of policy.

Policy Search



Preliminaries

- **Trajectory (rollout, episode)** $\tau = (s_0, a_0, s_1, a_1, \dots)$
 - $s_0 \sim \rho_0(\cdot)$, $s_{t+1} \sim P(\cdot | s_t, a_t)$
- **Rewards** $r_t = R(s_t, a_t, s_{t+1})$
- Finite-horizon undiscounted return of a trajectory

$$R(\tau) = \sum_{t=0}^T r_t$$

- Actions are sampled from a parameterized policy π_θ
$$a_t \sim \pi_\theta(\cdot | s_t)$$

Preliminaries

- Probability of a trajectory (rollout, episode) $\tau = (s_0, a_0, s_1, a_1, \dots)$

$$P(\tau|\pi) = \rho_0(s_0) \prod_{t=0}^{T-1} P(s_{t+1}|s_t, a_t) \pi_\theta(a_t|s_t)$$

- Expected Return of a policy $J(\pi)$

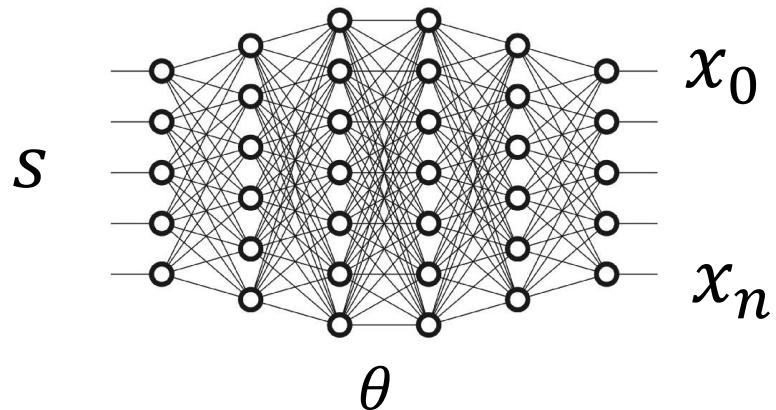
$$J(\pi) = \sum_{\tau} P(\tau|\pi) R(\tau) = E_{\tau \sim \pi}[R(\tau)]$$

- Goal of RL: Solve the following optimization problem

$$\pi^* = \operatorname{argmax}_{\pi} J(\pi)$$

How should we parameterize our policy?

- We need to be able to do two things:
 - Sample actions $a_t \sim \pi_\theta(\cdot | s_t)$
 - Compute log probabilities $\log \pi_\theta(a_t | s_t)$
- Categorical (classifier over discrete actions)
 - Typically, you output a value x_i for each action (class) and then the probability is given by a softmax equation



$$\pi_\theta(a_i | s) = \frac{\exp(x_i)}{\sum_j \exp(x_j)}$$

How should we parameterize our policy?

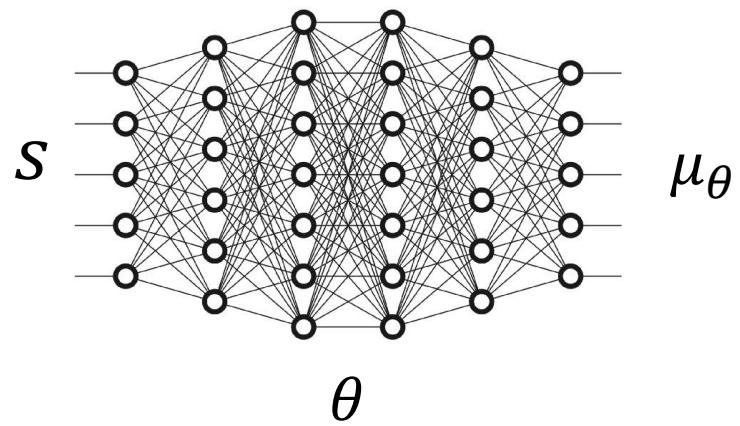
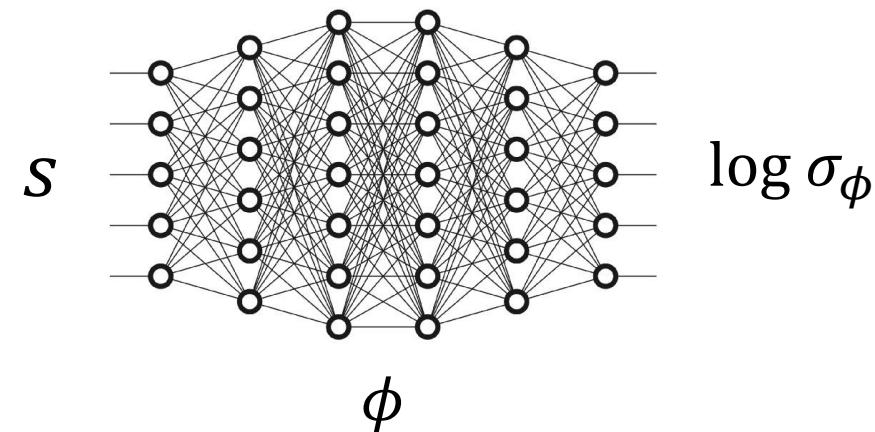
- Diagonal Gaussian (distribution over continuous actions)

$$a \sim N(\mu, \Sigma)$$

where Σ has non-zero elements only on the diagonal.

Thus, an action can be sampled as

$$a = \mu_\theta(s) + \sigma_\phi(s) \odot z, \quad z \sim N(0, I)$$



Goal: Update Policy via Gradient Ascent

- We have a parameterized policy and we want to update it so that it maximizes the expected return.
- We want to find the gradient of the return with respect to the policy parameters and step in that direction.

$$\theta_{k+1} \leftarrow \theta_k + \alpha \nabla_{\theta} J(\pi_{\theta}) \Big|_{\theta_k}$$

Policy gradient

Fact #1

- Probability of a trajectory:
 - The probability of a trajectory $\tau = (s_0, a_0, \dots, s_{T+1})$ given that actions come from π_θ is

$$P(\tau|\pi) = \rho_0(s_0) \prod_{t=0}^T P(s_{t+1}|s_t, a_t) \pi_\theta(a_t|s_t)$$

Fact #2

- **Log-probability of a trajectory:**

- The log-probability of a trajectory $\tau = (s_0, a_0, \dots, s_{T+1})$ given that actions come from π_θ is

$$\begin{aligned}\log P(\tau|\pi) &= \log \left(\rho_0(s_0) \prod_{t=0}^T P(s_{t+1}|s_t, a_t) \pi_\theta(a_t|s_t) \right) \\ &= \log \rho_0(s_0) \\ &\quad + \sum_{t=0}^T (\log P(s_{t+1}|s_t, a_t) + \log \pi_\theta(a_t|s_t))\end{aligned}$$

Fact #3

- Grad-Log-Prob of a Trajectory
 - Note that gradients of everything that doesn't depend on θ is 0.

$$\nabla_{\theta} \log P(\tau|\theta) = \cancel{\nabla_{\theta} \log \rho_0(s_0)} + \sum_{t=0}^T (\nabla_{\theta} \log P(s_{t+1}|s_t, a_t) + \nabla_{\theta} \log \pi_{\theta}(a_t|s_t))$$

$$= \sum_{t=0}^T (\nabla_{\theta} \log \pi_{\theta}(a_t|s_t))$$

Fact #4

- Log-Derivative Trick:
 - This is based on the rule from calculus that the derivative of $\log x$ is $1/x$

$$\nabla_{\theta} P(\tau|\pi) = P(\tau|\pi) \nabla_{\theta} \log P(\tau|\theta)$$

$$\frac{d}{dx} \log g(x) = \frac{1}{g(x)} \frac{d}{dx} g(x) \Rightarrow g(x) \frac{d}{dx} \log g(x) = \frac{d}{dx} g(x)$$

Derivation of Policy Gradient

$$\nabla_{\theta} J(\pi_{\theta}) = \nabla_{\theta} E_{\tau \sim \pi_{\theta}}[R(\tau)]$$

Try it!

The Policy Gradient (REINFORCE)

- We can now perform gradient ascent to improve our policy!

$$\theta_{k+1} \leftarrow \theta_k + \alpha \nabla_{\theta} J(\pi_{\theta}) \Big|_{\theta_k}$$

$$\nabla_{\theta} J(\pi_{\theta}) = E_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^T \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) R(\tau) \right]$$

Estimate with a sample mean over a set D of policy rollouts given current parameters

$$\approx \frac{1}{|D|} \sum_{\tau \in D} \sum_{t=0}^T \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) R(\tau)$$

How would you implement this?

1. Start with random policy parameters θ_0
2. Run the policy in the environment to collect N rollouts (episodes) of length T and save returns of each trajectory.

$$a_t \sim \pi_\theta(\cdot | s_t) \Rightarrow (s_0, a_0, r_0, s_1, a_1, r_1, \dots, r_T, s_{T+1})$$
$$D = \{\tau_1, \dots, \tau_N\}, \quad R = \{R(\tau_1), \dots, R(\tau_N)\}$$

3. Compute policy gradient

$$\nabla_\theta J(\pi_\theta) = E_{\tau \sim \pi_\theta} \left[\sum_{t=0}^T \nabla_\theta \log \pi_\theta(a_t | s_t) R(\tau) \right]$$

4. Update policy parameters

$$\theta_{k+1} \leftarrow \theta_k + \alpha \nabla_\theta J(\pi_\theta) \Big|_{\theta_k}$$

5. Repeat from step 2

What does the log probability look like?

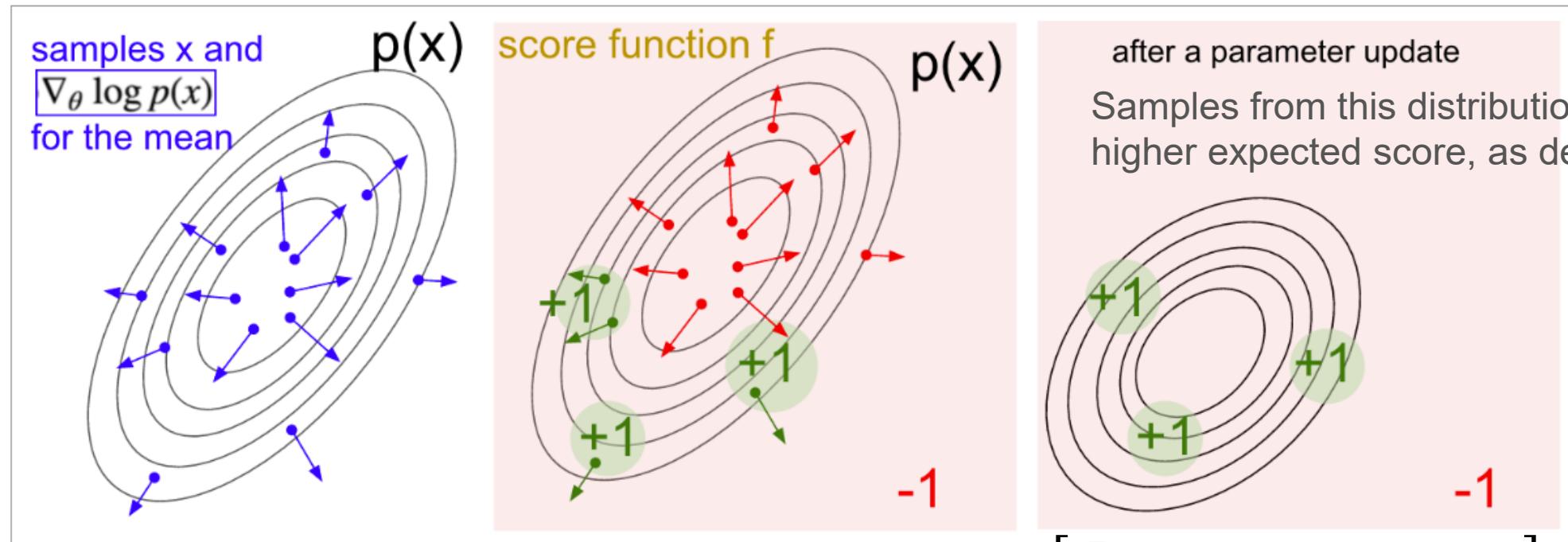
- $\log \pi_\theta(a|s) = ?$

$$\pi_\theta(a|s) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(a-\mu)^2}{2\sigma^2}\right) \quad \text{https://en.wikipedia.org/wiki/Normal_distribution}$$

$$\log \pi_\theta(a|s) = -\frac{1}{2} \left[\log(2\pi\sigma^2) + \frac{(a-\mu)^2}{\sigma^2} \right]$$

Some more intuition (thanks to Andrej Karpathy)

- Blue Dots: samples from Gaussian
- Blue arrows: gradients of the log probability with respect to the gaussian's mean parameter
- We score each sample
- Red have score -1
- Green have scores +1
- To update the Gaussian mean parameter, we average up all the green arrows, and the *negative* of the red arrows.



$$\nabla_{\theta} J(\pi_{\theta}) = E_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^T \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) R(\tau) \right]$$

Simple Pytorch Pseudocode

```
for episode in range(num_episodes):
    state = env.reset()
    trajectory = []

    while True:
        action, log_prob = select_action(policy_net, state)
        next_state, reward, done, _ = env.step(action)

        trajectory.append((log_prob, reward))
        state = next_state

    if done:
        break
```

```
# Compute returns and policy loss
log_probs, rewards = zip(*trajectory)
returns = compute_returns(rewards, gamma)
policy_loss = -sum(log_prob * G
                   for log_prob, G in zip(log_probs, returns))

# Update policy network
optimizer.zero_grad()
policy_loss.backward()
optimizer.step()
```

Policy Gradient RL Algorithms

- We can directly update the policy to achieve high reward.
- Pros:
 - Directly optimize what we care about: Utility!
 - Naturally handles continuous action spaces!
 - Can learn specific probabilities for taking actions.
 - Often more stable than value-based methods (e.g. DQN).
- Cons:
 - On-Policy -> Sample-inefficient we need to collect a large set of new trajectories every time the policy parameters change.
 - Q-Learning methods are usually more data efficient since they can reuse data from any policy (Off-Policy) and can update per sample.

Many forms of policy gradients

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^T \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \Phi_t \right]$$

What we derived: $\Phi_t = R(\tau)$,

Follows a similar derivation:

$$\Phi_t = \sum_{t'=t}^T R(s_{t'}, a_{t'}, s_{t'+1}),$$

<https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63>

- What is better about the second approach?
 - Focuses on rewards in the future!
 - Less variance -> less noisy gradients.

Many forms of policy gradients

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^T \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \Phi_t \right]$$

$$\Phi_t = \sum_{t'=t}^T R(s_{t'}, a_{t'}, s_{t'+1}),$$

Looks familiar....

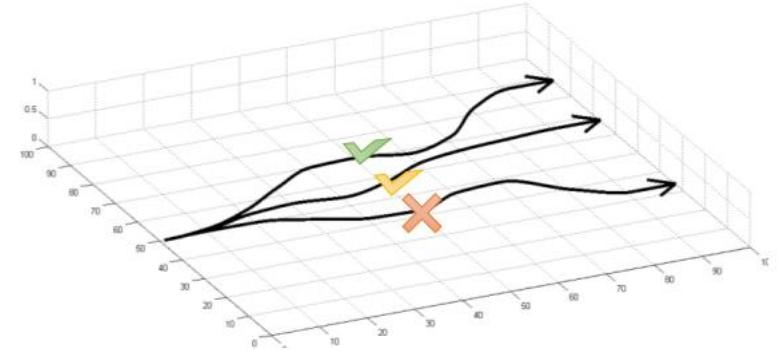
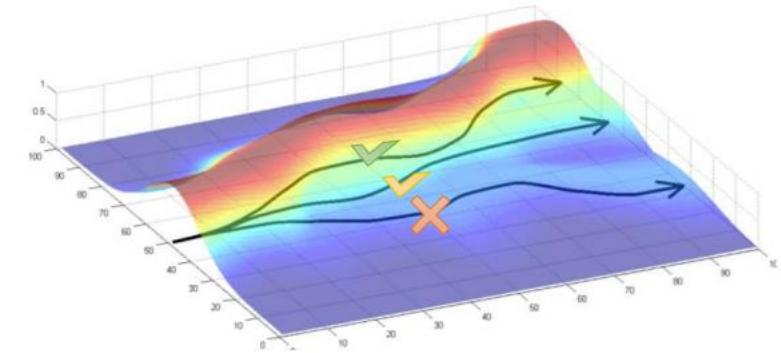
$$\Phi_t = Q^{\pi_{\theta}}(s_t, a_t)$$

- Now we have an approach that combines a parameterized policy and a parameterized value function!

Baselines

$$\nabla_{\theta} J(\pi_{\theta}) = E_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^T \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \ R(\tau) \right]$$

$$\approx \frac{1}{|D|} \sum_{\tau \in D} \sum_{t=0}^T \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \ R(\tau)$$



Baselines

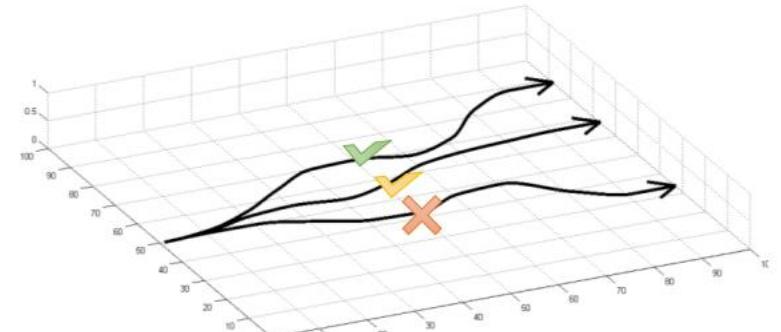
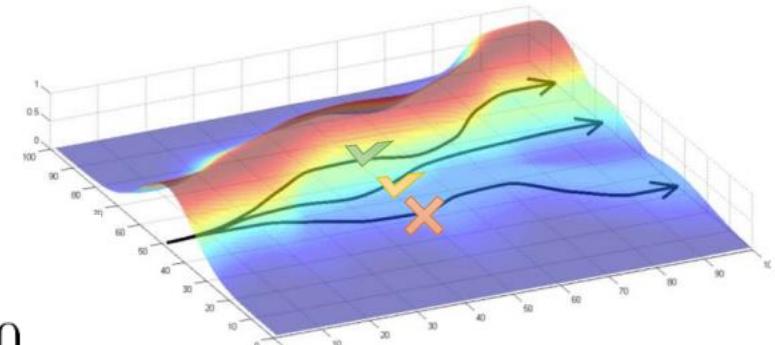
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^N \nabla_{\theta} \log p_{\theta}(\tau) [r(\tau) - b]$$

$$b = \frac{1}{N} \sum_{i=1}^N r(\tau)$$

But can we do this?

$$E[\nabla_{\theta} \log p_{\theta}(\tau) b] = \int p_{\theta}(\tau) \nabla_{\theta} \log p_{\theta}(\tau) b d\tau$$

$$= \int \nabla_{\theta} p_{\theta}(\tau) b d\tau = b \nabla_{\theta} \int p_{\theta}(\tau) d\tau = b \nabla_{\theta} 1 = 0$$



Many forms of policy gradients

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=1}^T \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \Phi_t \right]$$

$$\Phi_t = R(\tau), \quad \Phi_t = \sum_{t'=t}^T R(s_{t'}, a_{t'}, s_{t'+1}), \quad \Phi_t = Q^{\pi_{\theta}}(s_t, a_t)$$

$$\Phi_t = \sum_{t'=t}^T R(s_{t'}, a_{t'}, s_{t'+1}) - b(s_t)$$

$$\Phi_t = A^{\pi}(s_t, a_t) = Q^{\pi}(s_t, a_t) - V^{\pi}(s_t)$$

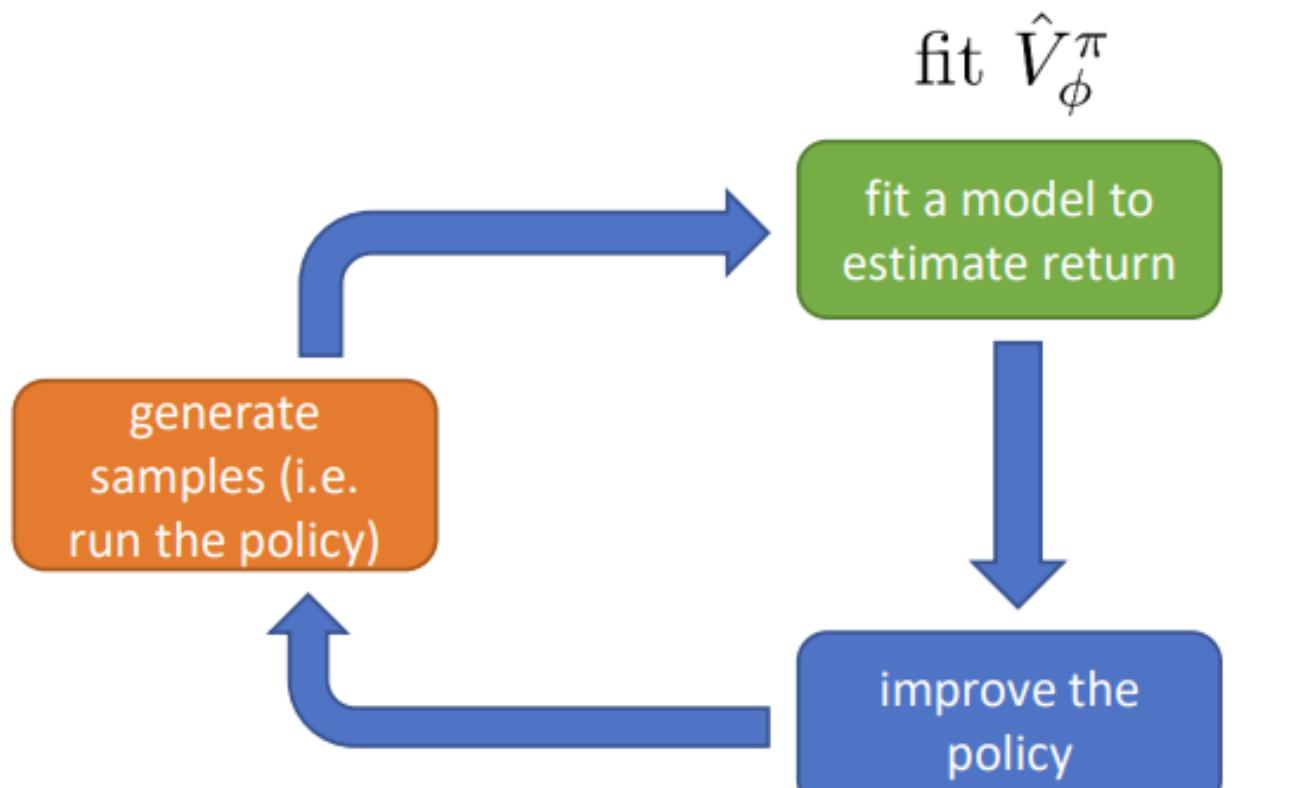
Advantage Function

I rotate
the piece

Actor

Critic

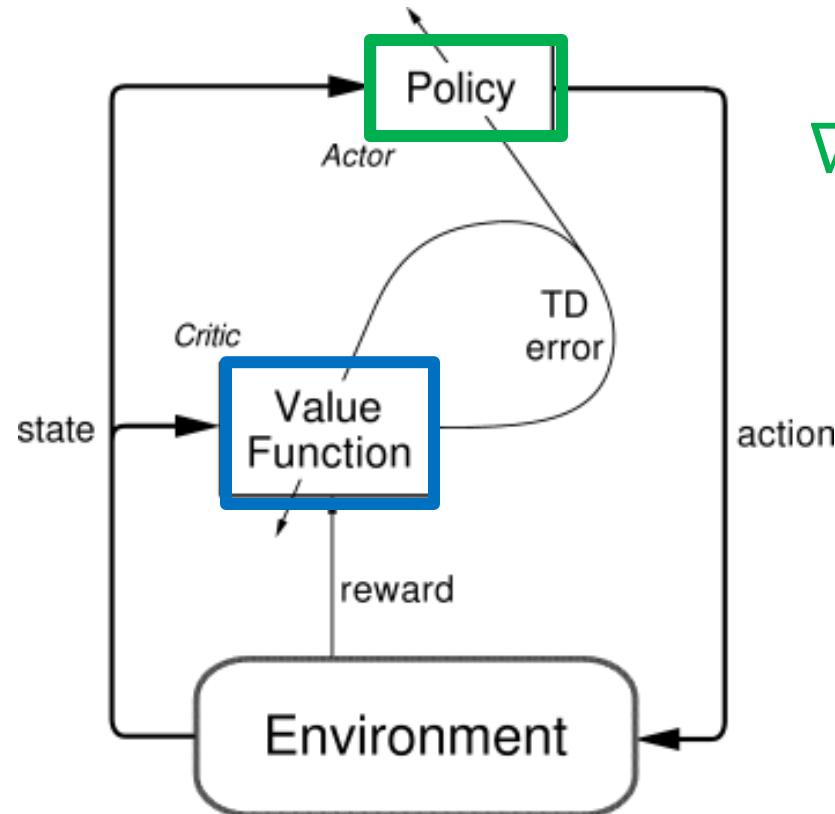
Really bad
action



$$\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$$

Actor Critic Algorithms

- Combining value learning with direct policy learning
 - One example is policy gradient using the advantage function



$$\nabla_{\theta} J(\pi_{\theta}) = E_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^T \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) Q_w^{\pi_{\theta}}(s_t, a_t) \right]$$

$$\theta_{k+1} \leftarrow \theta_k + \alpha \nabla_{\theta} J(\pi_{\theta}) \Big|_{\theta_k}$$

$$\delta = (r_t + \gamma Q_w^{\pi_{\theta}}(s_{t+1}, a_{t+1}) - Q_w^{\pi_{\theta}}(s_t, a_t))$$

$$w_{k+1} \leftarrow w_k + \alpha \delta_t \nabla_{\theta} Q_w^{\pi_{\theta}}$$

Q Actor Critic Algorithm Pseudo Code

Algorithm 1 Q Actor Critic

Initialize parameters s, θ, w and learning rates α_θ, α_w ; sample $a \sim \pi_\theta(a|s)$.

for $t = 1 \dots T$: **do**

 Sample reward $r_t \sim R(s, a)$ and next state $s' \sim P(s'|s, a)$

 Then sample the next action $a' \sim \pi_\theta(a'|s')$

 Update the policy parameters: $\theta \leftarrow \theta + \alpha_\theta Q_w(s, a) \nabla_\theta \log \pi_\theta(a|s)$; Compute the correction (TD error) for action-value at time t:

$$\delta_t = r_t + \gamma Q_w(s', a') - Q_w(s, a)$$

 and use it to update the parameters of Q function:

$$w \leftarrow w + \alpha_w \delta_t \nabla_w Q_w(s, a)$$

 Move to $a \leftarrow a'$ and $s \leftarrow s'$

end for

Adapted from Lilian Weng's post "Policy Gradient algorithms"

The Advantage Function

$$A(s, a) = \underline{Q(s, a)} - \underline{V(s)}$$

q value for action a
in state s

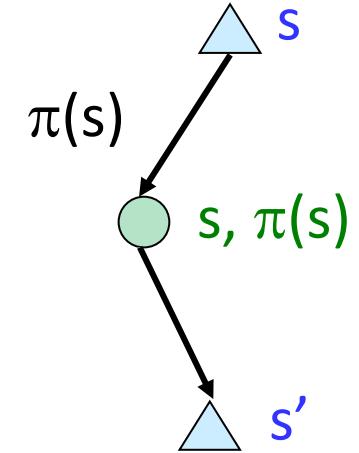
average
value
of that
state

- Why good?

- Why bad?

Temporal Difference Learning

- Big idea: learn from every experience!
 - Update $V(s)$ each time we experience a transition (s, a, s', r)
 - Likely outcomes s' will contribute updates more often



- Temporal difference learning of values
 - Policy still fixed, still doing evaluation!
 - Move values toward value of whatever successor occurs: running average

Sample of $V(s)$: $sample = R(s, \pi(s), s') + \gamma V^\pi(s')$

Update to $V(s)$: $V^\pi(s) \leftarrow V^\pi(s) + \alpha(sample - V^\pi(s))$

The Advantage Function

$$A(s, a) = \frac{Q(s, a) - V(s)}{r + \gamma V(s')}$$
$$A(s, a) = \frac{r + \gamma V(s') - V(s)}{\text{TD Error}}$$

Advantage Actor Critic (A2C)

- Combining value learning with direct policy learning
 - One example is policy gradient using the advantage function

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^T \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \Phi_t \right]$$

$$\Phi_t = A^{\pi}(s_t, a_t) = Q^{\pi}(s_t, a_t) - V^{\pi}(s_t)$$

TD-Learning update

$$w_{k+1} \leftarrow w_k + \alpha \delta_t \nabla_w V(s, a; w)$$

$$\text{TD error } \delta_t = r(s_t, a_t) + \gamma V^{\pi}(s_{t+1}) - V^{\pi}(s_t)$$

Rough Taxonomy of RL Algorithms

