
Policy Gradients

Daniel Brown --- University of Utah

Rough Taxonomy of RL Algorithms

2

3

4

What is the goal of RL?

▪ Find a policy that maximizes expected utility (discounted
cumulative rewards)

𝜋∗ = 𝑎𝑟𝑔max
𝜋

 𝐸𝜋 ෍

𝑡=0

∞

𝛾𝑡𝑅 𝑠, 𝜋 𝑠 , 𝑠′

Two approaches to model-free RL

▪ Learn Q-values

▪ Trains Q-values to be consistent. Not directly optimizing for
performance.

▪ Use an objective based on the Bellman Equation

▪ Learn Policy Directly

▪ Have a parameterized policy 𝜋𝜃

▪ Update the parameters 𝜃 to optimize performance of policy.
6

Policy Search

Preliminaries

▪ Trajectory (rollout, episode) 𝜏 = (𝑠0, 𝑎0, 𝑠1, 𝑎1, …)

▪ 𝑠0 ∼ 𝜌0 ⋅ , 𝑠𝑡+1 ∼ 𝑃(⋅ |𝑠𝑡 , 𝑎𝑡)

▪ Rewards 𝑟𝑡 = 𝑅(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1)

▪ Finite-horizon undiscounted return of a trajectory

𝑅 𝜏 = ෍

𝑡=0

𝑇

𝑟𝑡

▪ Actions are sampled from a parameterized policy 𝜋𝜃

𝑎𝑡 ∼ 𝜋𝜃(⋅ |𝑠𝑡)

Preliminaries

▪ Probability of a trajectory (rollout, episode) 𝜏 = (𝑠0, 𝑎0, 𝑠1, 𝑎1, …)

𝑃 𝜏 𝜋 = 𝜌0 𝑠0 ෑ

𝑡=0

𝑇−1

𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

▪ Expected Return of a policy J 𝜋

𝐽 𝜋 = ෍

𝜏

𝑃 𝜏 𝜋 𝑅 𝜏 = 𝐸𝜏∼𝜋[𝑅 𝜏]

▪ Goal of RL: Solve the following optimization problem
𝜋∗ = argmax

𝜋
 𝐽(𝜋)

How should we parameterize our policy?

▪ We need to be able to do two things:

▪ Sample actions 𝑎𝑡 ∼ 𝜋𝜃(⋅ |𝑠𝑡)

▪ Compute log probabilities log 𝜋𝜃 𝑎𝑡 𝑠𝑡

▪ Categorical (classifier over discrete actions)

▪ Typically, you output a value 𝑥𝑖 for each action (class) and then the
probability is given by a softmax equation

𝜋𝜃 𝑎𝑖 𝑠 =
exp(𝑥𝑖)

σ𝑗 exp(𝑥𝑗)
𝑥𝑛

𝑥0

𝑠

𝜃

How should we parameterize our policy?

▪ Diagonal Gaussian (distribution over continuous actions)

 𝑎 ∼ 𝑁(𝜇, Σ)

 where Σ has non-zero elements only on the diagonal.

Thus, an action can be sampled as
𝑎 = 𝜇𝜃 𝑠 + 𝜎𝜙 𝑠 ⨀𝑧, 𝑧 ∼ 𝑁(0, 𝐼)

𝑠 𝜇𝜃 𝑠

𝜙𝜃

log 𝜎𝜙

Goal: Update Policy via Gradient Ascent

▪ We have a parameterized policy and we want to update it so that
it maximizes the expected return.

▪ We want to find the gradient of the return with respect to the
policy parameters and step in that direction.

12

𝜃𝑘+1 ← 𝜃𝑘 + 𝛼∇𝜃𝐽 𝜋𝜃 ቚ
𝜃𝑘

Policy gradient

Fact #1

▪ Probability of a trajectory:

▪ The probability of a trajectory 𝜏 = (𝑠0, 𝑎0, … 𝑠𝑇+1) given that actions
come from 𝜋𝜃 is

𝑃 𝜏 𝜋 = 𝜌0 𝑠0 ෑ

𝑡=0

𝑇

𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

13

Fact #2

▪ Log-probability of a trajectory:

▪ The log-probability of a trajectory 𝜏 = (𝑠0, 𝑎0, … 𝑠𝑇+1) given that
actions come from 𝜋𝜃 is

log 𝑃 𝜏 𝜋 = log 𝜌0 𝑠0 ෑ

𝑡=0

𝑇

𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 𝜋𝜃(𝑎𝑡|𝑠𝑡)

= log 𝜌0 𝑠0

+ ෍

𝑡=0

𝑇

log 𝑃 𝑠𝑡+1 𝑠𝑡, 𝑎𝑡 + log 𝜋𝜃(𝑎𝑡|𝑠𝑡)

Fact #3

▪ Grad-Log-Prob of a Trajectory

▪ Note that gradients of everything that doesn’t depend on 𝜃 is 0.

∇𝜃 log 𝑃 𝜏 𝜃 = ∇𝜃 log 𝜌0 𝑠0 + ෍

𝑡=0

𝑇

∇𝜃 log 𝑃 𝑠𝑡+1 𝑠𝑡 , 𝑎𝑡 + ∇𝜃 log 𝜋𝜃(𝑎𝑡|𝑠𝑡)

= ෍

𝑡=0

𝑇

∇𝜃 log 𝜋𝜃(𝑎𝑡|𝑠𝑡)

Fact #4

▪ Log-Derivative Trick:

▪ This is based on the rule from calculus that the derivative of log x is 1/x

𝑑

𝑑𝑥
log 𝑔 𝑥 =

1

𝑔 𝑥

𝑑

𝑑𝑥
𝑔(𝑥) ⇒

∇𝜃𝑃 𝜏 𝜋 = 𝑃 𝜏 𝜋 ∇𝜃logP 𝜏 𝜃

𝑔(𝑥)
𝑑

𝑑𝑥
log 𝑔 𝑥 =

𝑑

𝑑𝑥
𝑔(𝑥)

Derivation of Policy Gradient

∇𝜃𝐽 𝜋𝜃 = ∇𝜃𝐸𝜏∼𝜋𝜃
𝑅 𝜏

 Try it!

The Policy Gradient (REINFORCE)

▪ We can now perform gradient ascent to improve our policy!

∇𝜃𝐽 𝜋𝜃 = 𝐸𝜏∼𝜋𝜃
෍

𝑡=0

𝑇

∇𝜃 log 𝜋𝜃(𝑎𝑡|𝑠𝑡) 𝑅(𝜏)

𝜃𝑘+1 ← 𝜃𝑘 + 𝛼∇𝜃𝐽 𝜋𝜃 ቚ
𝜃𝑘

≈
1

|𝐷|
෍

𝜏∈𝐷

෍

𝑡=0

𝑇

∇𝜃 log 𝜋𝜃(𝑎𝑡|𝑠𝑡) 𝑅(𝜏)

Estimate with a

sample mean over a

set D of policy rollouts

given current

parameters

How would you implement this?

1. Start with random policy parameters 𝜃0

2. Run the policy in the environment to collect N rollouts
(episodes) of length T and save returns of each trajectory.

𝑎𝑡 ∼ 𝜋𝜃 ⋅ 𝑠𝑡 ⇒ (𝑠0, 𝑎0, 𝑟0, 𝑠1, 𝑎1, 𝑟1, … , 𝑟𝑇 , 𝑠𝑇+1)

 𝐷 = 𝜏1, … 𝜏𝑁 , 𝑅 = {𝑅(𝜏1), … 𝑅(𝜏𝑁)}

3. Compute policy gradient

4. Update policy parameters

5. Repeat from step 2

∇𝜃𝐽 𝜋𝜃 = 𝐸𝜏∼𝜋𝜃
෍

𝑡=0

𝑇

∇𝜃 log 𝜋𝜃(𝑎𝑡|𝑠𝑡) 𝑅(𝜏)

𝜃𝑘+1 ← 𝜃𝑘 + 𝛼∇𝜃𝐽 𝜋𝜃 ቚ
𝜃𝑘

What does the log probability look like?

▪ log 𝜋𝜃 𝑎 𝑠 = ?

21

𝜋𝜃 𝑎 𝑠
https://en.wikipedia.org/wiki/Normal_distribution

https://en.wikipedia.org/wiki/Normal_distribution

Some more intuition (thanks to Andrej Karpathy)

https://karpathy.github.io/2016/05/31/rl/

• Blue Dots: samples from Gaussian

• Blue arrows: gradients of the log

probability with respect to the

gaussian's mean parameter

• To update the Gaussian mean

parameter, we average up all the

green arrows, and the negative of

the red arrows.

• We score each sample

• Red have score -1

• Green have scores +1

Samples from this distribution will have a

higher expected score, as desired.

∇𝜃𝐽 𝜋𝜃 = 𝐸𝜏∼𝜋𝜃
෍

𝑡=0

𝑇

∇𝜃 log 𝜋𝜃(𝑎𝑡|𝑠𝑡) 𝑅(𝜏)

Simple Pytorch Pseudocode

23

for episode in range(num_episodes):

 state = env.reset()

 trajectory = []

 while True:

 action, log_prob = select_action(policy_net, state)

 next_state, reward, done, _ = env.step(action)

 trajectory.append((log_prob, reward))

 state = next_state

 if done:

 break

Compute returns and policy loss

 log_probs, rewards = zip(*trajectory)

 returns = compute_returns(rewards, gamma)

 policy_loss = -sum(log_prob * G

 for log_prob, G in zip(log_probs, returns))

 # Update policy network

 optimizer.zero_grad()

 policy_loss.backward()

 optimizer.step()

Policy Gradient RL Algorithms

▪ We can directly update the policy to achieve high reward.

▪ Pros:

▪ Directly optimize what we care about: Utility!

▪ Naturally handles continuous action spaces!

▪ Can learn specific probabilities for taking actions.

▪ Often more stable than value-based methods (e.g. DQN).

▪ Cons:

▪ On-Policy -> Sample-inefficient we need to collect a large set of new
trajectories every time the policy parameters change.

▪ Q-Learning methods are usually more data efficient since they can reuse
data from any policy (Off-Policy) and can update per sample.

Many forms of policy gradients

What we derived:
Follows a similar

derivation:

https://medium.com/@thechrisyoon/deriving-policy-

gradients-and-implementing-reinforce-f887949bd63

▪ What is better about the second approach?

▪ Focuses on rewards in the future!

▪ Less variance -> less noisy gradients.

https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63
https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63
https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63
https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63
https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63
https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63
https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63
https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63
https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63
https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63
https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63
https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63
https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63
https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63
https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63
https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63

Many forms of policy gradients

Looks familiar….

▪ Now we have an approach that combines a parameterized policy
and a parameterized value function!

Baselines

∇𝜃𝐽 𝜋𝜃 = 𝐸𝜏∼𝜋𝜃
෍

𝑡=0

𝑇

∇𝜃 log 𝜋𝜃(𝑎𝑡|𝑠𝑡) 𝑅(𝜏)

≈
1

|𝐷|
෍

𝜏∈𝐷

෍

𝑡=0

𝑇

∇𝜃 log 𝜋𝜃(𝑎𝑡|𝑠𝑡) 𝑅(𝜏)

Baselines

But can we do this?

Many forms of policy gradients

Advantage Function

30

31

Actor Critic Algorithms

▪ Combining value learning with direct policy learning

▪ One example is policy gradient using the advantage function

∇𝜃𝐽 𝜋𝜃 = 𝐸𝜏∼𝜋𝜃
෍

𝑡=0

𝑇

∇𝜃 log 𝜋𝜃 𝑎𝑡 𝑠𝑡 𝑄𝑤
𝜋𝜃(𝑠𝑡, 𝑎𝑡)

𝜃𝑘+1 ← 𝜃𝑘 + 𝛼∇𝜃𝐽 𝜋𝜃 ቚ
𝜃𝑘

𝛿 = (𝑟𝑡 + 𝛾𝑄𝑤
𝜋𝜃 𝑠𝑡+1,𝑎𝑡+1 − 𝑄𝑤

𝜋𝜃(𝑠𝑡 , 𝑎𝑡))

𝑤𝑘+1 ← 𝑤𝑘 + 𝛼𝛿𝑡∇𝜃𝑄𝑤
𝜋_𝜃

Q Actor Critic Algorithm Pseudo Code

33

The Advantage Function

▪ Why good?

▪ Why bad?

Temporal Difference Learning

▪ Big idea: learn from every experience!
▪ Update V(s) each time we experience a transition (s, a, s’, r)

▪ Likely outcomes s’ will contribute updates more often

▪ Temporal difference learning of values
▪ Policy still fixed, still doing evaluation!

▪ Move values toward value of whatever successor occurs: running average

(s)

s

s, (s)

s’

Sample of V(s):

Update to V(s):

The Advantage Function

Advantage Actor Critic (A2C)

▪ Combining value learning with direct policy learning

▪ One example is policy gradient using the advantage function

TD error 𝛿𝑡 = 𝑟 𝑠𝑡 , 𝑎𝑡 + 𝛾𝑉𝜋 𝑠𝑡+1 − 𝑉𝜋(𝑠𝑡)

𝑤𝑘+1 ← 𝑤𝑘 + 𝛼𝛿𝑡∇𝑤𝑉(𝑠, 𝑎; 𝑤)

TD-Learning update

Rough Taxonomy of RL Algorithms

38

	Slide 1: Policy Gradients
	Slide 2: Rough Taxonomy of RL Algorithms
	Slide 3
	Slide 4
	Slide 5: What is the goal of RL?
	Slide 6: Two approaches to model-free RL
	Slide 7: Policy Search
	Slide 8: Preliminaries
	Slide 9: Preliminaries
	Slide 10: How should we parameterize our policy?
	Slide 11: How should we parameterize our policy?
	Slide 12: Goal: Update Policy via Gradient Ascent
	Slide 13: Fact #1
	Slide 14: Fact #2
	Slide 15: Fact #3
	Slide 16: Fact #4
	Slide 17: Derivation of Policy Gradient
	Slide 19: The Policy Gradient (REINFORCE)
	Slide 20: How would you implement this?
	Slide 21: What does the log probability look like?
	Slide 22: Some more intuition (thanks to Andrej Karpathy)
	Slide 23: Simple Pytorch Pseudocode
	Slide 24: Policy Gradient RL Algorithms
	Slide 25: Many forms of policy gradients
	Slide 26: Many forms of policy gradients
	Slide 27: Baselines
	Slide 28: Baselines
	Slide 29: Many forms of policy gradients
	Slide 30
	Slide 31
	Slide 32: Actor Critic Algorithms
	Slide 33: Q Actor Critic Algorithm Pseudo Code
	Slide 34: The Advantage Function
	Slide 35: Temporal Difference Learning
	Slide 36: The Advantage Function
	Slide 37: Advantage Actor Critic (A2C)
	Slide 38: Rough Taxonomy of RL Algorithms

