Policy Gradients

Instructor: Daniel Brown --- University of Utah

[Based on slides created by Dan Klein and Pieter Abbeel http://ai.berkeley.edu.]

Announcement

" Mid semester feedback is open!
" Help me make the class better!

" |f you submit feedback you get extra credit equivalent to 2 class
quizzes!

= All feedback is anonymous and appreciated.
= Confirm submission of feedback via canvas

Rough Taxonomy of RL Algorithms

Policy Optimization

j! Policy Gradient —

A2C [/ A3C <+—

PPO

TRPO

RL Algorithms

-«

!
{ 3
Model-Free RL Model-Based RL
{)
{ 3 {
Q-Learning \f Learn the Model
—> DQN J *» World Models
—* DDPG I— ’
—* C51 > [2A
—> TD3]
——> QR-DQN » MBMF
> SAC L I—
—> HER MBVE

\

Given the Model

\—% AlphaZero

What is the goal of RL?

" Find a policy that maximizes expected utility (discounted
cumulative rewards)

m* = argmax E,, E v'R(s,m(s),s")
T
Lt=0

Two approaches to model-free RL

= | earn Q-values

" Trains Q-values to be consistent. Not directly optimizing for
performance.

= Use an objective based on the Bellman Equation

Qt1(s,a) « S T(s,a,8) | R(s,a,8) +7 maxQu(s,a)

= Learn Policy Directly
" Have a parameterized policy mg
» Update the parameters 6 to optimize performance of policy.

v

Policy Search

Preliminaries

Trajectory (rollout, episode) T = (sg, ag, S1, A1, -+)
" So ~ Po(*), Ser1 ~ P(|se ae)
Rewards 1 = R(S¢, Aty Sgq1)

Finite-horizon undiscounted return of a trajectory

T M”‘v@%r\

R(7) = Z r &
t=0
Actions are sampled from a parameterized policy g
ar ~ o (- [Se)

Af\)(s\\ao,ssv\)Cc\\\s‘b ?(52\0\\ IS, C\A’“\’\ o\ b*(

Preliminaries Ord W)

A B\
f\)(&\ \(MoV

. . . L g/
" Probability of a trajectqry (rollout, episode}T = (s, ag, 1, A1, ---)
'\,.15«}3/\ T-1 L (R

4
P(z|m) = po(so) np(5t+1|5t» as)me(ac|se)
t=0
= Expected Return of a policy J(m)

J(m) =) P(elm) R(x) = Byl R(D)

" Goal of RL: Solve the following optimization problem
n" = argmax J (1)
T

How should we parameterize our policy?

= We need to be able to do two things:
» Sample actions a; ~ g (- |S¢)
= Compute log probabilities log g (a;|s;)
= Categorical (classifier over discrete actions)

» Typically, you output a value x; for each action (class) and then the
probability is given by a softmax equation

®
A

\%

/0 \vst/, O XN
© /AN /N 0 QWS
“‘*""l'z'l'?’-" o AN

»“:“’&’ﬁ‘)

"..“‘A)"o N
{'}":‘ %O:)‘\;}:\ ‘ . eX x .
SN/ S o kT oINS WIS E j P j
Y XX\ l»(\«\\\'//'l’,"}“\‘\%.
NN =
\V/Z85
NV Za\\V

How should we parameterize our policy?

%/“N(Df‘ 7 p+9<T
" Diagonal Gaussian (distribution over continuous actiong)\

a~ N(u X)
where 2 has non-zero elements only on the diagonal.

Thus, an action can be sampled as
) \
2\ — ~
S o e\ a = pg(s) +04(s)Qz, z~N(O,I) I %\
*)Lvd'\ <-’T\°""“'"'l L 6 -z G)f
ot b
'4//A\\\ ,5\\‘- 04//A\\\ ,5\\‘
\!('A.V‘:, A‘glf’/n «:?7;/-‘\ (//A\‘o, m“'l!’;e\ :::
\~ X t L2 @ vyt @ WY
S i’ ,, ‘#i ,U,Q S ,\/ Y
\ \\\!/"‘\V//'*‘-' \-\\\!/"‘\V//' ' -

Goal: Update Policy via Gradient Ascent

= We have a parameterized policy and we want to update it so that
it maximizes the expected return.

" We want to find the gradient of the return with respect to the
policy parameters and step in that direction.

Or+1 < Ok + aVy/ () .
k

Policy gradient

13

Fact #1

" Probability of a trajectory:

* The probability of a trajectory T = (g, ag, ... ST+1) given that actions
come from 1y is

T g
P(z|m) = po(sg) 1_[P(S¢i1lse ap)mg(ag|se)
t=0

14

Fact #2
" | og-probability of a trajectory: Q S(A ﬂ(’)

* The log-probability of a trajectory T = (s, ag, ... S7+1) given that
actions come from 1y is

T
log P(z|m) = log | po(so) HP(5t+1|St» a.)mg(az|se)
t=0

= log po(so)
T

+ z(log P(s¢+1lse ae) + log mg(ae|se))
t=0

Fact #3

" Grad-Log-Prob of a Trajectory

=" Note that gradients of everything that doesn’t depend on 8 is O.
O T &

Vg log P(z]60) = VW + E(VW) + Vg log mg (ac|st))
t=0

T
= Z(vg log g (a|st))
t=0

Fact #4

" | og-Derivative Trick:
= This is based on the rule from calculus that the derivative of log x is 1/x

VoP(tT|m) = P(T\n)VglogP(T\H)

)

(
d
03 dxlogg(x)—gx)dxg(x) :}g(;)\ logg(x) =

£ 0o : : : :
Mo 7 Derivation of Policy Gradient

. LtEEEEEEEEEEEEEEEE—————
Z

Vo) () = VgEyrn, [R(D] N
— VH ZTP(Tle)R(T)
=)>..VoP(t|0)R(T)
_ w&e log P(7]6) R(rﬂ ot 44
= En,[Vglog P(|0) R(7)]

— Er~ng[Z=O Volog g (ac|s:) R(T)] Fact#s

The Policy Gradient (REINFORCE)

" We can now perform gradient ascent to improve our policy!

Or+1 < Ok +aVy/ () ‘9
k

Vo) (6) = Ern, Zve log 7p(acs) R(2)

Estimate with a

sample mean over a sz Lo ma(als.) R
set D of policy rollouts |D| o logme(ar|se) R(7)
given current TED t=

parameters

How would you implement this?

1. Start with random policy parameters 6,

. Run the policy in the environment to collect N rollouts
(episodes) of length T and save returns of each trajectory.
ar ~ e (- Ist) = (S0, Ao, 70, S1, A1, T4y w0 s 1y ST41)

D ={tq,..Tn}, R = {R(11),...R(ty)}

. Compute policy gradient

(T
Vo] (tg) = Erop, 2 Vg log mg(at|s:) R(7)
. Update policy parameters =0

Or+1 < Ok + aVy(715) ‘9
k
. Repeat from step 2

Some more intuition (thanks to Andrej Karpathy)

« Blue Dots: samples from Gaussian

- Blue arrows: gradients of the log * We score each sample * To update the Gaussian mean
probability with respect to the * Red have score -1 parameter, we average up all the
« Green have scores +1 green arrows, and the negative of

aussian's mean parameter
g P the red arrows.
after a parameter update

Samples from this distribution will have a
higher expected score, as desired.

samples x and
Vg log p(x)
for the mea

T
- Vo) (6) = Erny |) Vo log mo(arlse) R(7)
https://karpathy.github.io/2016/05/31/rl/ o

Policy Gradient RL Algorithms

= We can directly update the policy to achieve high reward.

" Pros:
" Directly optimize what we care about: Utility!
= Naturally handles continuous action spaces!
" Can learn specific probabilities for taking actions.
» Often more stable than value-based methods (e.g. DQN).

= Cons:

" On-Policy -> Sample-inefficient we need to collect a large set of new
trajectories every time the policy parameters change.

" Q-Learning methods are usually more data efficient since they can reuse
data from any policy (Off-Policy) and can update per sample.

Many forms of policy gradients

Cgoao Co S‘O“rl >2

T i Sht
(.,JJ"
VoJ () = TE ZV@ logﬂg(at|s@ /

N'}TH
| 1=0 /’ i

T
. Follows a similar
What we derived: (I)t — R(T):, derivation: @9: R(St’; ay, 3t’+1)p
R

b=

https://medium.com/@thechrisyoon/deriving-policy-
gradients-and-implementing-reinforce-f887949bd63

= What is better about the secon@%’ﬁ'ﬁ?o%’chjo

" Focuses on rewards in the future!

" Less variance -> less noisy gradients.

https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63
https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63

Many forms of policy gradients

-7 -
VQJ(’PTQ) — Tﬁ]??m Z V@ log ﬂ_ﬂ(at|3t)(1)t
| t=0 |
L Looks familiar....
q)t f— ZR(St’;a’t’:St’qu); (I)t _ Qﬂg(staat)

Y=

= Now we have an approach that combines a parameterized policy
and a parameterized value function!

I rotate
the piece

Really bad
action

Critic

Actor Critic Algorithms

= Combining value learning with direct policy learning
" One example is policy gradient using the advantage function

Valu

Function

[T
Vo) () = Erony |) Vologmg(arls,) Qi (se, ar)

=0

state action

reward 0 = (ry + VQv7\TzH (5t+1,at+1) - Qv7\T/9 (St ar))

4[Environment }~ T 0
Wit1 < Wi + a0:VgQ,

Q Actor Critic Algorithm Pseudo Code

Algorithm 1 Q) Actor Critic

Initialize parameters s, 0, w and learning rates ag, a,,; sample a ~ mg(als).
fort=1...T: do
Sample reward r; ~ R(s,a) and next state s’ ~ P(s'|s, a)
Then sample the next action a’ ~ mg(a’|s’)
Update the policy parameters: 6 < 0+ apQ (s, a)Vglogmg(als); Compute
the correction (TD error) for action-value at time t:
Ot =1t +YQuw(s',a") — Qu(s, a)
and use it to update the parameters of () function:
W 4— W + Q0 Vo Qo (8, a)
Move to a <+ a’ and s < &
end for

Adapted from Lilian Weng’s post “Policy Gradient algorithms”

Many forms of policy gradients

T
E Z V@ log ’J’T()([It|8t)(1)t

T~TH

Vo J ()

T
®, = R(7), Oy =Y R(sy,ap, sp41), &, = Q™ (sy, ar)

T
D, = Z R(sy,ap, spv1) — b(st)

t'=t

O, = A" (8¢, a1) = Q7 (8¢, a:) — V7™ (s4)

Advantage Function

The Advantage Function

A(s,a) = Q(s,a) — V(s)

g value for action a average
in state s value
of that
state
= Why good?

= Why bad?

The Advantage Function

A(s,a) = Q(Is, a)l— V(s)
r—+ 7|V(3')
A(s,a) =r+~V(s') — V(s)

TD Error

Advantage Actor Critic (A2C)

= Combining value learning with direct policy learning
" One example is policy gradient using the advantage function

T
VoJ(mg) = TEM Z Vo log mg(as|s:) Dy TD-Learning update
= Wis1 < W +ad/V, V(s a;w)

O, = A" (s8¢, a1) = Q™ (s¢,ar) — V™ (sy)

TD error §; = r(s¢, ap) + YV (sep1) — VT(st)

Rough Taxonomy of RL Algorithms

Policy Optimization

Policy Gradient —

A2C [/ A3C <+—

PPO o

RL Algorithms

Model-Free RL Model-Based RL
{ f 3 { :
Q-Learning Learn the Model
—> DQN *» World Models
—* DDPG I— ’
—* C51 > [2A
—> TD3]
——> QR-DQN » MBMF
> SAC L I—
—> HER MBVE

TRPO -«

\

Given the Model

\—% AlphaZero

= Next time: Alpha Go

40

	Slide 1: Policy Gradients
	Slide 2: Announcement
	Slide 3: Rough Taxonomy of RL Algorithms
	Slide 4
	Slide 5
	Slide 6: What is the goal of RL?
	Slide 7: Two approaches to model-free RL
	Slide 8: Policy Search
	Slide 9: Preliminaries
	Slide 10: Preliminaries
	Slide 11: How should we parameterize our policy?
	Slide 12: How should we parameterize our policy?
	Slide 13: Goal: Update Policy via Gradient Ascent
	Slide 14: Fact #1
	Slide 15: Fact #2
	Slide 16: Fact #3
	Slide 17: Fact #4
	Slide 18: Derivation of Policy Gradient
	Slide 19: The Policy Gradient (REINFORCE)
	Slide 20: How would you implement this?
	Slide 21: Some more intuition (thanks to Andrej Karpathy)
	Slide 22: Policy Gradient RL Algorithms
	Slide 23: Many forms of policy gradients
	Slide 24: Many forms of policy gradients
	Slide 25
	Slide 28: Actor Critic Algorithms
	Slide 29: Q Actor Critic Algorithm Pseudo Code
	Slide 30: Many forms of policy gradients
	Slide 31: The Advantage Function
	Slide 32: The Advantage Function
	Slide 33: Advantage Actor Critic (A2C)
	Slide 38: Rough Taxonomy of RL Algorithms
	Slide 40

