Actor Critic and Proximal Policy Optimization
I rotat

Actor Critic

Instructor: Daniel Brown --- University of Utah



Announcement

= Mid semester feedback. Thank you!
= Whatyall like?
= Exploratory assignments, interesting topics, no exams ©
= Experience-based learning
= Paper reading
= What y’all want to see changed?
= Zoom options if you are sick.
= (Quizzes: more structure, no paper passing, more frequent, eliminate...
= End a minute or two early.
= More reading assignments
= Record lectures...
= Less math!
= More consistency in math.
= More math!
= Harder/deeper programming assignments



Announcement

= What helps y’all learn?

= Quizzes, In-class lectures, Recordings, Programming assignments to practice concepts
= What can | do to improve learning?

= More paper reading assignments, examples of applications.

= Add subtitles to zoom recordings

= More interactions and Q&A in lectures

= Move at a faster pace

= More structure in homework questions.

= Harder homework problems

= Post lecture slides earlier.

= Discuss pseudo code in lectures

= More math!

= Example project ideas.



Announcement

= Homework 5



Rough Taxonomy of RL Algorithms
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Dexterous Manipulation
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OpenAl 5: DOTA 2
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Step1

Collect demonstration data,
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This data is used
to fine-tune GPT-3
with supervised
learning.

Explain the moon
landing to a 6 year old

e}

Z

Some people went
to the moon...

RLHF in ChatGPT

Step 2

Collect comparison data,
and train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model.

Explain the moon
landing to a 6 year old

0 o

Explain gravity... Explain war...

o o

Moon is natural Paopla went to

satellite of . the moon...

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt
is sampled from
the dataset.

The policy
generates
an output.

The reward model
calculates a
reward for

the output.

The reward is
used to update
the policy
using PPO.

™

Write a story
about frogs

Once upon a time...




What is the goal of RL?

" Find a policy that maximizes expected utility (discounted
cumulative rewards)

m* = argmax E,, E v'R(s,m(s),s")
T
Lt=0



The Policy Gradient (REINFORCE)

" We can now perform gradient ascent to improve our policy!

Or+1 < Ok +aVy/ () ‘9
k

Vo) (6) = Ern, Zve log 7p(acs) R(2)

Estimate with a

sample mean over a sz Lo ma(als.) R
set D of policy rollouts |D| o logme(ar|se) R(7)
given current TED t=

parameters



Simple Pytorch Pseudocode

for episode in range(num_episodes):

state = env.reset() # Compute returns and _policy_loss
. _ log_probs, rewards = zip(*trajectory)
trajectory =[]
returns = compute_returns(rewards, gamma)
while True: policy_lossf: -slum(loggpg)p " G | b
action, log_prob = select_action(policy net, state) orlog_prob, G in zip(log_probs, returns))
next_state, reward, done, _ = env.step(action) # Update policy network
: optimizer.zero_grad()
trajectory.append((log_prob, reward)) :
state = next state poll_cy__loss.backward()
— optimizer.step()
if done:
break
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Policy Gradient RL Algorithms

= We can directly update the policy to achieve high reward.

" Pros:
" Directly optimize what we care about: Utility!
= Naturally handles continuous action spaces!
" Can learn specific probabilities for taking actions.
» Often more stable than value-based methods (e.g. DQN).

= Cons:

" On-Policy -> Sample-inefficient we need to collect a large set of new
trajectories every time the policy parameters change.

" Q-Learning methods are usually more data efficient since they can reuse
data from any policy (Off-Policy) and can update per sample.



Many forms of policy gradients

- _
VoJ(mp) = TETH Z Vg log ma(at|s:) P
| t=0 |
. 0 T

What we derived: &, = R(T), Folows asimiar @, — > R(sy,ap, sp41),

b=

https://medium.com/@thechrisyoon/deriving-policy-
gradients-and-implementing-reinforce-f887949bd63

" What is better about the second approach?
" Focuses on rewards in the future!
" Less variance -> less noisy gradients.


https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63
https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63

Many forms of policy gradients

-7 -
VQJ(’PTQ) — Tﬁ]??m Z V@ log ﬂ_ﬂ(at|3t)(1)t
| t=0 |
L Looks familiar....
q)t f— ZR(St’;a’t’:St’qu); (I)t _ Qﬂg(staat)

Y=

= Now we have an approach that combines a parameterized policy
and a parameterized value function!



Baselines

T
Vo) (0) = Evorg | ) Vologmo(acls) R@| -
t=0 |

T
1
~ mz 2 Vg logmg(a¢|s:) R(7)

TED t=0




Baselines

Vo (6) = 5 > Vologpe(r)lr(r) 1

1 <
h — ﬁ Z ?"(T) But can we do this?

E[Vglogpg(T)b] = /Pe(’r)ve logpg(T)bdT

= /Vgpg(r)bd'r = bVy /pg('r)d'r =bVyl =0




Many forms of policy gradients

T
V()J(TTQ) = E Z V@ log ’J’T()([It|8t)(1)t

T~TH

T
®, = R(7), Oy =Y R(sy,ap, sp41), &, = Q™ (sy, ar)

H—t

T
D, = Z R(sy,ap, spv1) — b(st)

t'=t

O, = A" (8¢, a1) = Q7 (8¢, a:) — V7™ (s4)

Advantage Function



I rotate
the piece

Really bad
action

Critic



fit V]

fit a model to
ﬁ estimate return
generate

samples (i.e.
run the policy)

‘ improve the
policy

0« 0+ aVeJ(0)

e S




Actor Critic Algorithms

= Combining value learning with direct policy learning
" One example is policy gradient using the advantage function

Valu

Function

[T
Vo) () = Erony | ) Vologmg(arls,) Qi (se, ar)

=0

state action

reward 0 = (ry + VQv7\TzH (5t+1,at+1) - Qv7\T/9 (St ar))

4[ Environment }~ T 0
Wit1 < Wi + a0:VgQ,




Q Actor Critic Algorithm Pseudo Code

Algorithm 1 Q) Actor Critic

Initialize parameters s, 0, w and learning rates ag, a,,; sample a ~ mg(als).
fort=1...T: do
Sample reward r; ~ R(s,a) and next state s’ ~ P(s'|s, a)
Then sample the next action a’ ~ mg(a’|s’)
Update the policy parameters: 6 < 0+ apQ (s, a)Vglogmg(als); Compute
the correction (TD error) for action-value at time t:
Ot =1t +YQuw(s',a") — Qu(s, a)
and use it to update the parameters of () function:
W 4— W + Q0 Vo Qo (8, a)
Move to a <+ a’ and s < &
end for

Adapted from Lilian Weng’s post “Policy Gradient algorithms”



The Advantage Function

A(s,a) = Q(s,a) — V(s)

g value for action a average
in state s value
of that
state
" Benefits?

= Downsides?



Temporal Difference Learning

= Bigidea: learn from every experience!
= Update V(s) each time we experience a transition (s, a, s’, r)
= Likely outcomes s’ will contribute updates more often

* Temporal difference learning of values
= Policy still fixed, still doing evaluation!
= Move values toward value of whatever successor occurs: running average

Sample of V(s): sample = R(s,m(s),s) +~4V™(s")

Updateto V(s): V7 (s) + V7(s) 4+ a(sample — V™(s))




The Advantage Function

A(s,a) = Q(Is, a)l— V(s)
r—+ 7|V(3')
A(s,a) =r+~V(s') — V(s)

TD Error




Advantage Actor Critic (A2C)

" Combining value learning with direct policy learning el
-~ Actor Critic ) 4
‘ :0 : Critic
e Policy gradient update TD-Learning update
Actor
T
0 =1(s¢,ap) +yV™(s — V(s
Vo J () :TEM Zve log mp(ar|s:) Py t ( t t) YV t+1) (st)
t=0

Value = V" (s;)
by = A%(s1, 1) = Q7 (s1, a0) = V7(s1) Target = r(s¢, ag) + yV™(S¢41)
=~ 1(Se,ar) +yVT(sep1) — VT(st) Wiy1 < Wi + aMSE (value, target)

https://medium.com/@dixitaniket76/advantage-actor-critic-a2c-algorithm-explained-and-implemented-in-pytorch-
dc3354b60b50



Quiz

" Calculate and interpret Vglog m(a|s) for a 1-dimensional
Gaussian policy

Nalio?) =~ exp (-2 “)2)

27 202
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Asynchronous Advantage Actor Critic (A3C)

Asynchronous Methods for Deep Reinforcement Learning

Volodymyr Mnih! VMNIH @ GOOGLE.COM
Adria Puigdoménech Badia’ ADRIAP@ GOOGLE.COM
Mehdi Mirza'* MIRZAMOM @IRO.UMONTREAL.CA
Alex Graves' GRAVESA @ GOOGLE.COM
Tim Harley' THARLEY @ GOOGLE.COM
Timothy P. Lillicrap' COUNTZERO @ GOOGLE.COM
David Silver! DAVIDSILVER @ GOOGLE.COM
Koray Kavukcuoglu ! KORAYK @ GOOGLE.COM

! Google DeepMind
2 Montreal Institute for Learning Algorithms (MILA), University of Montreal

27



Asynchronous Advantage Actor Critic (A3C)

= Adds a few tricks

1. Multiple parallel workers to collect rollouts in different
copies of the same env and update the global policy and value
models asynchronously

2. n-step returns
3. Entropy regularization
4. Share neural network weights for actor and critic

28



Parallel actors

online actor-critic algorithm:

=» 1. take action a ~ my(als), get (s,a,s’,r)

2. update IA/QZI using target r + 'yf/?”(s’) - works best with a batch (e.g., parallel workers)
3. evaluate A™(s,a) = r(s, aA) + wgy/— 5 (s)
4. Vo J(0) =~ Vglogmy(als)A™ (s, a)

5.0+ 0+ aVyJ(0)

synchronized parallel actor-critic asynchronous parallel actor-critic

get s, a8, ) 0}

update 0 + Bt =

get (s,a,s’,r)«—l I l '

update 0 + Bl

NN I 't




N-Step Returns

= At convergence we want V™ (s;) = E_[ry + YV ™(S¢41)]

= So given experience (S¢, s, T, St+1), TD methods push
V™ (s;) towards ry + yV™(S;41)

= But why only look one step ahead? [1-step return]

" |n practice we have experience that looks like this
(S0, Ap, 70, S1,S2, A2, T, 83, uuy St A, Ty Spqy wee )
What if we pushed V™ (s,) towards 1y + y7roq + Y2V (Sp45)?
Or even pushed V™ (s,) towards 1. + y1p41 + Y742 + ¥V (Sp43)?

We can generalize this idea to use n-step returns!



N-Step Returns for A3C updates

Given (Sg, Qg, 79, S1, A1, 71, S, «ee» St) A, Ty St 1y o T'T7—1, ST)

Compute advantage for each state. If s, is a terminal state, then define VF(s)=0
T—t—1

A(sy, ap) = z V1w + ¥ T (sp) — Vi (se)
=0
Accumulate gradients for each state and update policy using policy gradient

Vg logmg(a;lse) Ay (St ar)

Update Value function based on TD-error using MSE loss

_ . 2
7( 7, Yireas + ¥ (sr) — v’f(st))




Shannon Entropy

= Average level of uncertainty associated with a random variable’s

possible outcomes.
1 1
P(X = heads) = 5 P(X = tails) = 5

= - p(z)logp(x

reEX

0
0 20 40 60 80 100

Head (h) or Tails (t) probability (%)



Policy Entropy Bonus

" Improves exploration by discouraging premature convergence to
suboptimal deterministic policies.

1

|
P(X = heads) = 5 P(X = tails) = 5

H(r) = - m(a|s)logn(als)

Entropy

H(m) = —/ﬂ(a|3)lﬂgﬂ(a\5)d{1

20 40 60
Head (h) or Tails (t) probability (%)



Parameter Sharing

online actor-critic algorithm:
> 1. take action a ~ my(als), get (s,a,s’,r)
2. update I7q§: using target r + 71??”(5’ ) )
3. evaluate A™(s,a) = r(s, Et) +Vi(s") = Vi(s)
4. VoJ(0) = Vylogmg(als)A™ (s, a)
5.0« 0+ aVeJ(0)

two network design + simple & stable

- no shared features between actor & critic

shared network design




Generalized Advantage Estimation (GAE)

Published as a conference paper at ICLR 2016

HIGH-DIMENSIONAL CONTINUOUS CONTROL USING
GENERALIZED ADVANTAGE ESTIMATION

John Schulman, Philipp Moritz, Sergey Levine, Michael 1. Jordan and Pieter Abbeel
Department of Electrical Engineering and Computer Science
University of California, Berkeley

{joschu, pcmoritz, levine, jordan, pabbeel }@eecs.berkeley.edu
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= Can we construct all possible n-step returns and average them?

Ar(siar) = Sl y! tr(se,ar) = VE(st) 49"V (St4n)

Smaller n results in lower variance, but higher bias

iz = Sl wad
GAE(Stj at) T n=1 u"ﬂ n(stﬂ at)

weighted combination of n-step returns

Wy, o< A" exponential falloff where 4 € [0,1]

)

GAE(St, A1) = Z?:t(’?‘/\)ﬂ_tfst’ 0y = r(sy,ap) + ’qu?(sw—l) - ‘7J(Sﬂ)

N similar effect as discount!



GAE Pseudo Code

#predict values based on sequence of states in a trajectory

vals = predict_values(states)

# the next two lines implement GAE-Lambda advantage calculation
deltas = rews[:-1] + * vals[1:] - vals[:-1]

gae = discount_cumsum(deltas, *lam)

37



Proximal Policy Optimization (PPO)

Proximal Policy Optimization Algorithms
John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov
OpenAl

{joschu, filip, prafulla, alec, oleg}@openai.com

38



Why does the policy gradient work?

AW (Xt, ut)

fit a model to
estimate return

N T
]_ -
Vo J(0) ~ N E :E Vo log mg(ai¢|sit) A7
1=1 t=1

‘—b

generate
samples (i.e.
) . _ run the policy)
) 1. Estimate A™(s;,a;) for current policy
\ ; -
. n . . th
2, Use A™(sy, a¢) to get improved policy 7’ 'mpng;; .

0 0+aVyJ(h)
look familiar?



Why does the policy gradient work?

AW (Xt, ut)

fit a model to
‘ _ estimate return
generate
samples (i.e.
) . _ run the policy)
) 1. Estimate A™(s;,a;) for current policy 7
| t improve the
policy

0« 0+ aVyJ(0)

N T
]_ -
Vo J(0) ~ N E :E Vo log mg(ai¢|sit) A7
1=1 t=1

y
f

ol .
2, Use A™(s4, a4) to get improved policy 7’

look familiar?

policy iteration algorithm:
|"/F:> 1. evaluate A™(s,a)
= 2 oset 7+ 7



Proximal Policy Optimization (PPO)

" One of the most popular deep RL algorithms
= Used to train ChatGPT and other LLMs

Motivation:
= Many Policy Gradient algorithms have stability problems.

= This can be avoided if we avoid making too big of a policy
update.

https://huggingface.co/blog/deep-rl-ppo
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Proximal Policy Iteration (PPO)

= Measure how much we are changing policy compared with
previous policy using a ratio:

T (at|se)

tio (0) =
ration(©) g, (A¢lst)

" Clip policy gradient update based on this ratio:

0.1 =argmax E [L(s,a,0,0)]

# sa~mg,

mo(als)

oy (als)

L(s,a,f;,0) = min ( A" (s,a), clip ( ) 1 —e, 1+ E) A% (s, {L))

?T{]k,({llﬁ)



Proximal Policy Iteration (PPO)
= Simpler way to write clip objective:

me(als)
e (a’S)

L(S; a, Ok, 9) = min ( A" (Sa GJ); 9(63 A" (Sa a)))

where

(1+e)A A>0
Q(G’A):{ (1-A A<

https://spinningup.openai.com/en/latest/algorithms/ppo.html



Proximal Policy Iteration (PPO)
= Simpler way to write clip objective:

me(als)
7oy, (CL|S)

L(S') a, Qkag) = min ( A" (Sa a’)a 9(63 A% (S,CL)))

What if the advantage is positive?
where

. [ m(als)
A A L(s,a, 0, 0) = min 7r9 "y J(14¢) ) A™ (s, a)
g<e,A>:{8j3A = (ekm )

We want to increase my(als), but not too much!

Once mg(als) > (1 + €)mg, (als) the min kicks in
and limits our policy update.

https://spinningup.openai.com/en/latest/algorithms/ppo.html



Proximal Policy Iteration (PPO)

= Simpler way to write clip objective:

L(s,a,0,6) = min (mg(a|s) A" (s,a), g(e, Aﬂ%(s,a))>

7oy, (CL|S)

What if the advantage is negative?
where

u&m@ﬁpqu(mmm u@)mw@@)

7T9k(a’|8)7

(1+e)A A>0
Q(E’A):{ T—0A A<0

We want to decrease my(als), but not too much!

Once mg(als) < (1 — €)mg, (a|s) the max kicks in
and limits our policy update.

https://spinningup.openai.com/en/latest/algorithms/ppo.htmi



Algorithm 1 PPO-Clip
1: Input: initial policy parameters 6, initial value function parameters ¢
2: for £ =0,1,2,... do
3:  Collect set of trajectories Dy = {7;} by running policy 7 = 7(fx) in the environment.
4:  Compute rewards-to-go R;.
5 Compute advantage estimates, Ay (using any method of advantage estimation) based
on the current value function V, .
6: Update the policy by maximizing the PPO-Clip objective:

Z me ( at‘st) Aﬁek(sz&j at), g(E:Amk(Styat))> :

6,
k+1 = arg maX |D;¢.|T

typically via stochastic gradient ascent with Adam.
7. Fit value function by regression on mean-squared error:

S (v A1)

T7€D;, t=0

Qp+1 = arg mln ]Dk|T

typically via some gradient descent algorithm.
8: end for




Lots of other tricks used

= Additional advantage normalization
= Early stopping with KL-divergence
= Etc.

The 37 Implementation Details of Proximal
Policy Optimization: https://iclr-blog-
track.github.i0/2022/03/25/ppo-implementation-
details/

49


https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
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