Actor Critic and Proximal Policy Optimization
I rotat

Actor Critic

Instructor: Daniel Brown --- University of Utah

Announcement

= Mid semester feedback. Thank you!
= Whatyall like?
= Exploratory assignments, interesting topics, no exams ©
= Experience-based learning
= Paper reading
= What y’all want to see changed?
= Zoom options if you are sick.
= (Quizzes: more structure, no paper passing, more frequent, eliminate...
= End a minute or two early.
= More reading assignments
= Record lectures...
= Less math!
= More consistency in math.
= More math!
= Harder/deeper programming assignments

Announcement

= What helps y’all learn?

= Quizzes, In-class lectures, Recordings, Programming assignments to practice concepts
= What can | do to improve learning?

= More paper reading assignments, examples of applications.

= Add subtitles to zoom recordings

= More interactions and Q&A in lectures

= Move at a faster pace

= More structure in homework questions.

= Harder homework problems

= Post lecture slides earlier.

= Discuss pseudo code in lectures

= More math!

= Example project ideas.

Announcement

= Homework 5

Rough Taxonomy of RL Algorithms

Policy Optimization

Policy Gradient —

A2C [/ A3C <+—

PPO o

RL Algorithms

Model-Free RL Model-Based RL
{ f 3 { :
Q-Learning Learn the Model
—> DQN *» World Models
—* DDPG I— ’
—* C51 > [2A
—> TD3]
——> QR-DQN » MBMF
> SAC L I—
—> HER MBVE

TRPO -«

\

Given the Model

\—% AlphaZero

Dexterous Manipulation

Human View

(cloNolollofoNoNoloNolloMoNoRNoNoNo]

AI View

.07155341984
.06754000613
.06228982219
.05501284074
.04931758296
.04192665512
.03458805963
.02981736443
.02428471393
.01733000708
.018538
.02609310462

8312

3343425073

.04154509263
.04881679852
.04828479414

0.1856500915
0.2001686769
0.199201747
0.209774121
.2110927133
.2187263648
.2223477091
.2164824055
.2145174525
.2182403815
.2234897601
.2235220601
.2253894907
.2246084071
0.225467511
0.2271819552

[oflolloNoNoNoNoNoloNo]

0.19253466¢C

0.22690745¢
0.21843539¢
0.2209807¢
0.22311596¢
0.22300885¢
0.22212560¢
0.2281701¢
.22475798€
.23240874
.23022691
.23096672¢
.22804817¢

OpenAl 5: DOTA 2

Human View

ROV B %Y 4 X [TNE oY

3

.006

e -0.3154

wWE w

2,

RNDWWMNWWMN NN

&) akil
324
A0S
o EraiT
2025
a9l
2963
.834
2
.088
.984
2037
50715
.412

AI View

-1.386 -0.4695
-0.5425 —{0)=
=il &ls =0l EleiElE
2.863 0.9746
SRS 6l O (S
2899l 0.988
—-0.9395 0.05234
-0.5747 0.01746
e USROS 906
-3.164 0.01746
=1.368 0.6562
S I3 6604685
= IS SESREE 08 225
=il o &l 0.788
-1.438 0.883
2.846 Y SE6

0.883
0.866
0.3584
Q225
0.6294
0.1565
={8) ElefEls

0.4695
0.08716

ool Nol _jloololNoRol ol ol

1280/1280
710/710

(cNoloNoNoNoNolNoNoNoNoNoRNoNoNO)

Step1

Collect demonstration data,
and train a supervised policy.

A promptis
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This data is used
to fine-tune GPT-3
with supervised
learning.

Explain the moon
landing to a 6 year old

e}

Z

Some people went
to the moon...

RLHF in ChatGPT

Step 2

Collect comparison data,
and train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks
the outputs from
best to worst.

This data is used
to train our
reward model.

Explain the moon
landing to a 6 year old

0 o

Explain gravity... Explain war...

o o

Moon is natural Paopla went to

satellite of . the moon...

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt
is sampled from
the dataset.

The policy
generates
an output.

The reward model
calculates a
reward for

the output.

The reward is
used to update
the policy
using PPO.

™

Write a story
about frogs

Once upon a time...

What is the goal of RL?

" Find a policy that maximizes expected utility (discounted
cumulative rewards)

m* = argmax E,, E v'R(s,m(s),s")
T
Lt=0

The Policy Gradient (REINFORCE)

" We can now perform gradient ascent to improve our policy!

Or+1 < Ok +aVy/ () ‘9
k

Vo) (6) = Ern, Zve log 7p(acs) R(2)

Estimate with a

sample mean over a sz Lo ma(als.) R
set D of policy rollouts |D| o logme(ar|se) R(7)
given current TED t=

parameters

Simple Pytorch Pseudocode

for episode in range(num_episodes):

state = env.reset() # Compute returns and _policy_loss
. _ log_probs, rewards = zip(*trajectory)
trajectory =[]
returns = compute_returns(rewards, gamma)
while True: policy_lossf: -slum(loggpg)p " G | b
action, log_prob = select_action(policy net, state) orlog_prob, G in zip(log_probs, returns))
next_state, reward, done, _ = env.step(action) # Update policy network
: optimizer.zero_grad()
trajectory.append((log_prob, reward)) :
state = next state poll_cy__loss.backward()
— optimizer.step()
if done:
break

11

Policy Gradient RL Algorithms

= We can directly update the policy to achieve high reward.

" Pros:
" Directly optimize what we care about: Utility!
= Naturally handles continuous action spaces!
" Can learn specific probabilities for taking actions.
» Often more stable than value-based methods (e.g. DQN).

= Cons:

" On-Policy -> Sample-inefficient we need to collect a large set of new
trajectories every time the policy parameters change.

" Q-Learning methods are usually more data efficient since they can reuse
data from any policy (Off-Policy) and can update per sample.

Many forms of policy gradients

- _
VoJ(mp) = TETH Z Vg log ma(at|s:) P
| t=0 |
. 0 T

What we derived: &, = R(T), Folows asimiar @, — > R(sy,ap, sp41),

b=

https://medium.com/@thechrisyoon/deriving-policy-
gradients-and-implementing-reinforce-f887949bd63

" What is better about the second approach?
" Focuses on rewards in the future!
" Less variance -> less noisy gradients.

https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63
https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63

Many forms of policy gradients

-7 -
VQJ(’PTQ) — Tﬁ]??m Z V@ log ﬂ_ﬂ(at|3t)(1)t
| t=0 |
L Looks familiar....
q)t f— ZR(St’;a’t’:St’qu); (I)t _ Qﬂg(staat)

Y=

= Now we have an approach that combines a parameterized policy
and a parameterized value function!

Baselines

T
Vo) (0) = Evorg |) Vologmo(acls) R@| -
t=0 |

T
1
~ mz 2 Vg logmg(a¢|s:) R(7)

TED t=0

Baselines

Vo (6) = 5 > Vologpe(r)lr(r) 1

1 <
h — ﬁ Z ?"(T) But can we do this?

E[Vglogpg(T)b] = /Pe(’r)ve logpg(T)bdT

= /Vgpg(r)bd'r = bVy /pg('r)d'r =bVyl =0

Many forms of policy gradients

T
V()J(TTQ) = E Z V@ log ’J’T()([It|8t)(1)t

T~TH

T
®, = R(7), Oy =Y R(sy,ap, sp41), &, = Q™ (sy, ar)

H—t

T
D, = Z R(sy,ap, spv1) — b(st)

t'=t

O, = A" (8¢, a1) = Q7 (8¢, a:) — V7™ (s4)

Advantage Function

I rotate
the piece

Really bad
action

Critic

fit V]

fit a model to
ﬁ estimate return
generate

samples (i.e.
run the policy)

‘ improve the
policy

0« 0+ aVeJ(0)

e S

Actor Critic Algorithms

= Combining value learning with direct policy learning
" One example is policy gradient using the advantage function

Valu

Function

[T
Vo) () = Erony |) Vologmg(arls,) Qi (se, ar)

=0

state action

reward 0 = (ry + VQv7\TzH (5t+1,at+1) - Qv7\T/9 (St ar))

4[Environment }~ T 0
Wit1 < Wi + a0:VgQ,

Q Actor Critic Algorithm Pseudo Code

Algorithm 1 Q) Actor Critic

Initialize parameters s, 0, w and learning rates ag, a,,; sample a ~ mg(als).
fort=1...T: do
Sample reward r; ~ R(s,a) and next state s’ ~ P(s'|s, a)
Then sample the next action a’ ~ mg(a’|s’)
Update the policy parameters: 6 < 0+ apQ (s, a)Vglogmg(als); Compute
the correction (TD error) for action-value at time t:
Ot =1t +YQuw(s',a") — Qu(s, a)
and use it to update the parameters of () function:
W 4— W + Q0 Vo Qo (8, a)
Move to a <+ a’ and s < &
end for

Adapted from Lilian Weng’s post “Policy Gradient algorithms”

The Advantage Function

A(s,a) = Q(s,a) — V(s)

g value for action a average
in state s value
of that
state
" Benefits?

= Downsides?

Temporal Difference Learning

= Bigidea: learn from every experience!
= Update V(s) each time we experience a transition (s, a, s’, r)
= Likely outcomes s’ will contribute updates more often

* Temporal difference learning of values
= Policy still fixed, still doing evaluation!
= Move values toward value of whatever successor occurs: running average

Sample of V(s): sample = R(s,m(s),s) +~4V™(s")

Updateto V(s): V7 (s) + V7(s) 4+ a(sample — V™(s))

The Advantage Function

A(s,a) = Q(Is, a)l— V(s)
r—+ 7|V(3')
A(s,a) =r+~V(s') — V(s)

TD Error

Advantage Actor Critic (A2C)

" Combining value learning with direct policy learning el
-~ Actor Critic) 4
‘ :0 : Critic
e Policy gradient update TD-Learning update
Actor
T
0 =1(s¢,ap) +yV™(s — V(s
Vo J () :TEM Zve log mp(ar|s:) Py t (t t) YV t+1) (st)
t=0

Value = V" (s;)
by = A%(s1, 1) = Q7 (s1, a0) = V7(s1) Target = r(s¢, ag) + yV™(S¢41)
=~ 1(Se,ar) +yVT(sep1) — VT(st) Wiy1 < Wi + aMSE (value, target)

https://medium.com/@dixitaniket76/advantage-actor-critic-a2c-algorithm-explained-and-implemented-in-pytorch-
dc3354b60b50

Quiz

" Calculate and interpret Vglog m(a|s) for a 1-dimensional
Gaussian policy

Nalio?) =~ exp (-2 “)2)

27 202

26

Asynchronous Advantage Actor Critic (A3C)

Asynchronous Methods for Deep Reinforcement Learning

Volodymyr Mnih! VMNIH @ GOOGLE.COM
Adria Puigdoménech Badia’ ADRIAP@ GOOGLE.COM
Mehdi Mirza'* MIRZAMOM @IRO.UMONTREAL.CA
Alex Graves' GRAVESA @ GOOGLE.COM
Tim Harley' THARLEY @ GOOGLE.COM
Timothy P. Lillicrap' COUNTZERO @ GOOGLE.COM
David Silver! DAVIDSILVER @ GOOGLE.COM
Koray Kavukcuoglu ! KORAYK @ GOOGLE.COM

! Google DeepMind
2 Montreal Institute for Learning Algorithms (MILA), University of Montreal

27

Asynchronous Advantage Actor Critic (A3C)

= Adds a few tricks

1. Multiple parallel workers to collect rollouts in different
copies of the same env and update the global policy and value
models asynchronously

2. n-step returns
3. Entropy regularization
4. Share neural network weights for actor and critic

28

Parallel actors

online actor-critic algorithm:

=» 1. take action a ~ my(als), get (s,a,s’,r)

2. update IA/QZI using target r + 'yf/?”(s’) - works best with a batch (e.g., parallel workers)
3. evaluate A™(s,a) = r(s, aA) + wgy/— 5 (s)
4. Vo J(0) =~ Vglogmy(als)A™ (s, a)

5.0+ 0+ aVyJ(0)

synchronized parallel actor-critic asynchronous parallel actor-critic

get s, a8,) 0}

update 0 + Bt =

get (s,a,s’,r)«—l I l '

update 0 + Bl

NN I 't

N-Step Returns

= At convergence we want V™ (s;) = E_[ry + YV ™(S¢41)]

= So given experience (S¢, s, T, St+1), TD methods push
V™ (s;) towards ry + yV™(S;41)

= But why only look one step ahead? [1-step return]

" |n practice we have experience that looks like this
(S0, Ap, 70, S1,S2, A2, T, 83, uuy St A, Ty Spqy wee)
What if we pushed V™ (s,) towards 1y + y7roq + Y2V (Sp45)?
Or even pushed V™ (s,) towards 1. + y1p41 + Y742 + ¥V (Sp43)?

We can generalize this idea to use n-step returns!

N-Step Returns for A3C updates

Given (Sg, Qg, 79, S1, A1, 71, S, «ee» St) A, Ty St 1y o T'T7—1, ST)

Compute advantage for each state. If s, is a terminal state, then define VF(s)=0
T—t—1

A(sy, ap) = z V1w + ¥ T (sp) — Vi (se)
=0
Accumulate gradients for each state and update policy using policy gradient

Vg logmg(a;lse) Ay (St ar)

Update Value function based on TD-error using MSE loss

_ . 2
7(7, Yireas + ¥ (sr) — v’f(st))

Shannon Entropy

= Average level of uncertainty associated with a random variable’s

possible outcomes.
1 1
P(X = heads) = 5 P(X = tails) = 5

= - p(z)logp(x

reEX

0
0 20 40 60 80 100

Head (h) or Tails (t) probability (%)

Policy Entropy Bonus

" Improves exploration by discouraging premature convergence to
suboptimal deterministic policies.

1

|
P(X = heads) = 5 P(X = tails) = 5

H(r) = - m(a|s)logn(als)

Entropy

H(m) = —/ﬂ(a|3)lﬂgﬂ(a\5)d{1

20 40 60
Head (h) or Tails (t) probability (%)

Parameter Sharing

online actor-critic algorithm:
> 1. take action a ~ my(als), get (s,a,s’,r)
2. update I7q§: using target r + 71??”(5’))
3. evaluate A™(s,a) = r(s, Et) +Vi(s") = Vi(s)
4. VoJ(0) = Vylogmg(als)A™ (s, a)
5.0« 0+ aVeJ(0)

two network design + simple & stable

- no shared features between actor & critic

shared network design

Generalized Advantage Estimation (GAE)

Published as a conference paper at ICLR 2016

HIGH-DIMENSIONAL CONTINUOUS CONTROL USING
GENERALIZED ADVANTAGE ESTIMATION

John Schulman, Philipp Moritz, Sergey Levine, Michael 1. Jordan and Pieter Abbeel
Department of Electrical Engineering and Computer Science
University of California, Berkeley

{joschu, pcmoritz, levine, jordan, pabbeel }@eecs.berkeley.edu

35

= Can we construct all possible n-step returns and average them?

Ar(siar) = Sl y! tr(se,ar) = VE(st) 49"V (St4n)

Smaller n results in lower variance, but higher bias

iz = Sl wad
GAE(Stj at) T n=1 u"ﬂ n(stﬂ at)

weighted combination of n-step returns

Wy, o< A" exponential falloff where 4 € [0,1]

)

GAE(St, A1) = Z?:t(’?‘/\)ﬂ_tfst’ 0y = r(sy,ap) + ’qu?(sw—l) - ‘7J(Sﬂ)

N similar effect as discount!

GAE Pseudo Code

#predict values based on sequence of states in a trajectory

vals = predict_values(states)

the next two lines implement GAE-Lambda advantage calculation
deltas = rews[:-1] + * vals[1:] - vals[:-1]

gae = discount_cumsum(deltas, *lam)

37

Proximal Policy Optimization (PPO)

Proximal Policy Optimization Algorithms
John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov
OpenAl

{joschu, filip, prafulla, alec, oleg}@openai.com

38

Why does the policy gradient work?

AW (Xt, ut)

fit a model to
estimate return

N T
]_ -
Vo J(0) ~ N E :E Vo log mg(ai¢|sit) A7
1=1 t=1

‘—b

generate
samples (i.e.
) . _ run the policy)
) 1. Estimate A™(s;,a;) for current policy
\ ; -
. n . . th
2, Use A™(sy, a¢) to get improved policy 7’ 'mpng;; .

0 0+aVyJ(h)
look familiar?

Why does the policy gradient work?

AW (Xt, ut)

fit a model to
‘ _ estimate return
generate
samples (i.e.
) . _ run the policy)
) 1. Estimate A™(s;,a;) for current policy 7
| t improve the
policy

0« 0+ aVyJ(0)

N T
]_ -
Vo J(0) ~ N E :E Vo log mg(ai¢|sit) A7
1=1 t=1

y
f

ol .
2, Use A™(s4, a4) to get improved policy 7’

look familiar?

policy iteration algorithm:
|"/F:> 1. evaluate A™(s,a)
= 2 oset 7+ 7

Proximal Policy Optimization (PPO)

" One of the most popular deep RL algorithms
= Used to train ChatGPT and other LLMs

Motivation:
= Many Policy Gradient algorithms have stability problems.

= This can be avoided if we avoid making too big of a policy
update.

https://huggingface.co/blog/deep-rl-ppo

@)
Q.
&
T
Q.
(b
Q
©
S~~~
(@)
Qo
®)
~~
@)
<
Q
O
©
Y—
(@)
=
(@)
(@)
>
L
=
n
o
=
e

Proximal Policy Iteration (PPO)

= Measure how much we are changing policy compared with
previous policy using a ratio:

T (at|se)

tio (0) =
ration(©) g, (A¢lst)

" Clip policy gradient update based on this ratio:

0.1 =argmax E [L(s,a,0,0)]

sa~mg,

mo(als)

oy (als)

L(s,a,f;,0) = min (A" (s,a), clip () 1 —e, 1+ E) A% (s, {L))

?T{]k,({llﬁ)

Proximal Policy Iteration (PPO)
= Simpler way to write clip objective:

me(als)
e (a’S)

L(S; a, Ok, 9) = min (A" (Sa GJ); 9(63 A" (Sa a)))

where

(1+e)A A>0
Q(G’A):{ (1-A A<

https://spinningup.openai.com/en/latest/algorithms/ppo.html

Proximal Policy Iteration (PPO)
= Simpler way to write clip objective:

me(als)
7oy, (CL|S)

L(S') a, Qkag) = min (A" (Sa a’)a 9(63 A% (S,CL)))

What if the advantage is positive?
where

. [m(als)
A A L(s,a, 0, 0) = min 7r9 "y J(14¢)) A™ (s, a)
g<e,A>:{8j3A = (ekm)

We want to increase my(als), but not too much!

Once mg(als) > (1 + €)mg, (als) the min kicks in
and limits our policy update.

https://spinningup.openai.com/en/latest/algorithms/ppo.html

Proximal Policy Iteration (PPO)

= Simpler way to write clip objective:

L(s,a,0,6) = min (mg(a|s) A" (s,a), g(e, Aﬂ%(s,a))>

7oy, (CL|S)

What if the advantage is negative?
where

u&m@ﬁpqu(mmm u@)mw@@)

7T9k(a’|8)7

(1+e)A A>0
Q(E’A):{ T—0A A<0

We want to decrease my(als), but not too much!

Once mg(als) < (1 — €)mg, (a|s) the max kicks in
and limits our policy update.

https://spinningup.openai.com/en/latest/algorithms/ppo.htmi

Algorithm 1 PPO-Clip
1: Input: initial policy parameters 6, initial value function parameters ¢
2: for £ =0,1,2,... do
3: Collect set of trajectories Dy = {7;} by running policy 7 = 7(fx) in the environment.
4: Compute rewards-to-go R;.
5 Compute advantage estimates, Ay (using any method of advantage estimation) based
on the current value function V, .
6: Update the policy by maximizing the PPO-Clip objective:

Z me (at‘st) Aﬁek(sz&j at), g(E:Amk(Styat))> :

6,
k+1 = arg maX |D;¢.|T

typically via stochastic gradient ascent with Adam.
7. Fit value function by regression on mean-squared error:

S (v A1)

T7€D;, t=0

Qp+1 = arg mln]Dk|T

typically via some gradient descent algorithm.
8: end for

Lots of other tricks used

= Additional advantage normalization
= Early stopping with KL-divergence
= Etc.

The 37 Implementation Details of Proximal
Policy Optimization: https://iclr-blog-
track.github.i0/2022/03/25/ppo-implementation-
details/

49

https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/

	Slide 1: Actor Critic and Proximal Policy Optimization
	Slide 2: Announcement
	Slide 3: Announcement
	Slide 4: Announcement
	Slide 5: Rough Taxonomy of RL Algorithms
	Slide 6: Dexterous Manipulation
	Slide 7: OpenAI 5: DOTA 2
	Slide 8: RLHF in ChatGPT
	Slide 9: What is the goal of RL?
	Slide 10: The Policy Gradient (REINFORCE)
	Slide 11: Simple Pytorch Pseudocode
	Slide 12: Policy Gradient RL Algorithms
	Slide 13: Many forms of policy gradients
	Slide 14: Many forms of policy gradients
	Slide 15: Baselines
	Slide 16: Baselines
	Slide 17: Many forms of policy gradients
	Slide 18
	Slide 19
	Slide 20: Actor Critic Algorithms
	Slide 21: Q Actor Critic Algorithm Pseudo Code
	Slide 22: The Advantage Function
	Slide 23: Temporal Difference Learning
	Slide 24: The Advantage Function
	Slide 25: Advantage Actor Critic (A2C)
	Slide 26: Quiz
	Slide 27: Asynchronous Advantage Actor Critic (A3C)
	Slide 28: Asynchronous Advantage Actor Critic (A3C)
	Slide 29: Parallel actors
	Slide 30: N-Step Returns
	Slide 31: N-Step Returns for A3C updates
	Slide 32: Shannon Entropy
	Slide 33: Policy Entropy Bonus
	Slide 34: Parameter Sharing
	Slide 35: Generalized Advantage Estimation (GAE)
	Slide 36
	Slide 37: GAE Pseudo Code
	Slide 38: Proximal Policy Optimization (PPO)
	Slide 39: Why does the policy gradient work?
	Slide 40: Why does the policy gradient work?
	Slide 41: Proximal Policy Optimization (PPO)
	Slide 42
	Slide 43: Proximal Policy Iteration (PPO)
	Slide 45: Proximal Policy Iteration (PPO)
	Slide 46: Proximal Policy Iteration (PPO)
	Slide 47: Proximal Policy Iteration (PPO)
	Slide 48
	Slide 49: Lots of other tricks used

