Actor Critic and Proximal Policy Optimization

Instructor: Daniel Brown --- University of Utah

Announcement

- Mid semester feedback. Thank you!
- What y'all like?
 - Exploratory assignments, interesting topics, no exams ③
 - Experience-based learning
 - Paper reading
- What y'all want to see changed?
 - Zoom options if you are sick.
 - Quizzes: more structure, no paper passing, more frequent, eliminate...
 - End a minute or two early.
 - More reading assignments
 - Record lectures...
 - Less math!
 - More consistency in math.
 - More math!
 - Harder/deeper programming assignments

Announcement

- What helps y'all learn?
 - Quizzes, In-class lectures, Recordings, Programming assignments to practice concepts
- What can I do to improve learning?
 - More paper reading assignments, examples of applications.
 - Add subtitles to zoom recordings
 - More interactions and Q&A in lectures
 - Move at a faster pace
 - More structure in homework questions.
 - Harder homework problems
 - Post lecture slides earlier.
 - Discuss pseudo code in lectures
 - More math!
 - Example project ideas.

Announcement

Homework 5

Rough Taxonomy of RL Algorithms

Dexterous Manipulation

Human View

AI View

0.07155341984	0.1856500915	0.19253466
0.06754000613	0.2001686769	0.20659073
0.06228982219	0.199201747	0.2182140
0.05501284074	0.209774121	0.22402398
9.04931758296	0.2110927133	0.22690745
0.04192665512	0.2187263648	0.21843539
0.03458805963	0.2223477091	0.2209807
0.02981736443	0.2164824055	0.22311596
0.02428471393	0.2145174525	0.22300885
9.01733000709	0.2182403815	0.22212560
0.01853848312	0.2234897601	0.2281701
0.02609310462	0.2235220601	0.22475798
0.03343425073	0.2253894907	0.23240874
0.04154509263	0.2246084071	0.23022691
0.04881679852	0.225467511	0.23096672
04828479414	0 2271819552	0 22804817

OpenAl 5: DOTA 2

± ⇔ ≡

Human View

3.006	-1.386	-0.4695	0.883	1	0.84
-0.3154	-0.5425	-0.5	0.866	0	0.82
3.11	-1.36	-0.9336	0.3584	1	0.78
-2.324	2.863	0.9746	0.225	0	0.86
3.037	-1.361	-0.7773	0.6294	1	0.82
-1.387	2.951	0.988	0.1565	0	0.74
3.023	-0.9395	0.05234	-0.9985	0	0.66
2.951	-0.5747	0.01746	1	0	0.72
2.963	-1.303	0.3906	0.9204	0	0.68
2.834	-3.164	0.01746	-1	0	0.68
3.127	-1.368	0.6562	0.755	1	0.55
3.088	-1.366	0.4695	0.883	0	0.55
2.984	-1.398	-0.225	0.9746	1	0.55
3.037	-1.391	0.788	0.6157	0	0.55
3.076	-1.438	0.883	0.4695	0	0.55
-2.412	2.846	0.996	0.08716	1	0.3

AI View

17:50

RLHF in ChatGPT

Step 1

Collect demonstration data, and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3 with supervised learning.

Some people went to the moon...

Step 2

best to worst.

This data is used

to train our reward model.

Collect comparison data, and train a reward model.

A prompt and several model Explain the moon outputs are landing to a 6 year old sampled. (A) Explain gravity C Moon is natural satellite of ... A labeler ranks the outputs from

D > C > A = B

 \bigcirc

В

Explain war

D

People went to

the moon

Step 3

Optimize a policy against the reward model using reinforcement learning.

A new prompt is sampled from the dataset.

The policy generates an output.

Write a story about frogs PPO Once upon a time...

 r_k

-

The reward is used to update the policy using PPO.

The reward model

calculates a

reward for

the output.

What is the goal of RL?

Find a policy that maximizes expected utility (discounted cumulative rewards)

$$\pi^* = \arg\max_{\pi} E_{\pi} \left[\sum_{t=0}^{\infty} \gamma^t R(s, \pi(s), s') \right]$$

The Policy Gradient (REINFORCE)

We can now perform gradient ascent to improve our policy!

$$\theta_{k+1} \leftarrow \theta_k + \alpha \nabla_{\theta} J(\pi_{\theta}) \Big|_{\theta_k}$$

$$\nabla_{\theta} J(\pi_{\theta}) = E_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) R(\tau) \right]$$

 $\approx \frac{1}{|D|} \sum_{t=1}^{\infty} \sum_{t=1}^{\infty} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) R(\tau)$

Estimate with a sample mean over a set D of policy rollouts given current parameters

Simple Pytorch Pseudocode

```
for episode in range(num_episodes):
    state = env.reset()
    trajectory = []
```

while True:

action, log_prob = select_action(policy_net, state)
next_state, reward, done, _ = env.step(action)

```
trajectory.append((log_prob, reward))
state = next_state
```

if done:

break

Compute returns and policy loss log_probs, rewards = zip(*trajectory) returns = compute_returns(rewards, gamma) policy_loss = -sum(log_prob * G for log_prob, G in zip(log_probs, returns))

Update policy network
optimizer.zero_grad()
policy_loss.backward()
optimizer.step()

Policy Gradient RL Algorithms

- We can directly update the policy to achieve high reward.
- Pros:
 - Directly optimize what we care about: Utility!
 - Naturally handles continuous action spaces!
 - Can learn specific probabilities for taking actions.
 - Often more stable than value-based methods (e.g. DQN).
- Cons:
 - On-Policy -> Sample-inefficient we need to collect a large set of new trajectories every time the policy parameters change.
 - Q-Learning methods are usually more data efficient since they can reuse data from any policy (Off-Policy) and can update per sample.

Many forms of policy gradients

$$\nabla_{\theta} J(\pi_{\theta}) = \mathop{\mathrm{E}}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_t | s_t) \Phi_t \right]$$

What we derived: $\Phi_t = R(\tau)$,

Follows a similar derivation: $\Phi_t = \sum_{t'=t}^T R(s_{t'}, a_{t'}, s_{t'+1}),$

https://medium.com/@thechrisyoon/deriving-policygradients-and-implementing-reinforce-f887949bd63

- What is better about the second approach?
 - Focuses on rewards in the future!
 - Less variance -> less noisy gradients.

Many forms of policy gradients

$$\begin{split} \nabla_{\theta} J(\pi_{\theta}) &= \mathop{\mathrm{E}}_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \Phi_{t} \right] \\ \Phi_{t} &= \sum_{t'=t}^{T} R(s_{t'}, a_{t'}, s_{t'+1}), \end{split} \quad \text{Looks familiar....} \\ \Phi_{t} &= Q^{\pi_{\theta}}(s_{t}, a_{t}) \end{split}$$

Now we have an approach that combines a parameterized policy and a parameterized value function!

Baselines

$$\nabla_{\theta} J(\pi_{\theta}) = E_{\tau \sim \pi_{\theta}} \left[\sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) R(\tau) \right]$$
$$\approx \frac{1}{|D|} \sum_{\tau \in D} \sum_{t=0}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) R(\tau)$$

Baselines

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \nabla_{\theta} \log p_{\theta}(\tau) [r(\tau) - b]$$

$$E[\nabla_{\theta} \log p_{\theta}(\tau)b] = \int p_{\theta}(\tau)\nabla_{\theta} \log p_{\theta}(\tau)b \,d\tau$$
$$= \int \nabla_{\theta} p_{\theta}(\tau)b \,d\tau = b\nabla_{\theta} \int p_{\theta}(\tau)d\tau = b\nabla_{\theta}1 = 0$$

Many forms of policy gradients

$$\nabla_{\theta} J(\pi_{\theta}) = \mathop{\mathrm{E}}_{\tau \sim \pi_{\theta}} \left[\sum_{i=1}^{T} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \Phi_{t} \right]$$

$$\Phi_{t} = R(\tau), \qquad \Phi_{t} = \sum_{t'=t}^{T} R(s_{t'}, a_{t'}, s_{t'+1}), \qquad \Phi_{t} = Q^{\pi_{\theta}}(s_{t}, a_{t})$$

$$\Phi_{t} = \sum_{t'=t}^{T} R(s_{t'}, a_{t'}, s_{t'+1}) - b(s_{t})$$

$$\Phi_{t} = A^{\pi}(s_{t}, a_{t}) = Q^{\pi}(s_{t}, a_{t}) - V^{\pi}(s_{t})$$
Advantage Function

Actor Critic Algorithms

- Combining value learning with direct policy learning
 - One example is policy gradient using the advantage function

Q Actor Critic Algorithm Pseudo Code

Algorithm 1 Q Actor Critic

Initialize parameters s, θ, w and learning rates $\alpha_{\theta}, \alpha_{w}$; sample $a \sim \pi_{\theta}(a|s)$. for $t = 1 \dots T$: do Sample reward $r_t \sim R(s, a)$ and next state $s' \sim P(s'|s, a)$ Then sample the next action $a' \sim \pi_{\theta}(a'|s')$ Update the policy parameters: $\theta \leftarrow \theta + \alpha_{\theta} Q_w(s, a) \nabla_{\theta} \log \pi_{\theta}(a|s)$; Compute the correction (TD error) for action-value at time t: $\delta_t = r_t + \gamma Q_w(s', a') - Q_w(s, a)$ and use it to update the parameters of Q function: $w \leftarrow w + \alpha_w \delta_t \nabla_w Q_w(s, a)$ Move to a $\leftarrow a'$ and s $\leftarrow s'$

end for

The Advantage Function

$$A(s,a) = Q(s,a) - V(s)$$

q value for action a in state s

average value of that state

Benefits?

Downsides?

Temporal Difference Learning

- Big idea: learn from every experience!
 - Update V(s) each time we experience a transition (s, a, s', r)
 - Likely outcomes s' will contribute updates more often
- Temporal difference learning of values
 - Policy still fixed, still doing evaluation!
 - Move values toward value of whatever successor occurs: running average

Sample of V(s): $sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$

Update to V(s): $V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$

The Advantage Function

$$A(s,a) = Q(s,a) - V(s)$$
$$r + \gamma V(s')$$
$$A(s,a) = r + \gamma V(s') - V(s)$$

TD Error

Advantage Actor Critic (A2C)

https://medium.com/@dixitaniket76/advantage-actor-critic-a2c-algorithm-explained-and-implemented-in-pytorch-dc3354b60b50

Quiz

• Calculate and interpret $\nabla_{\theta} \log \pi(a|s)$ for a 1-dimensional Gaussian policy

$$\mathcal{N}(a|\mu,\sigma^2) = rac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-rac{(a-\mu)^2}{2\sigma^2}
ight)$$

Asynchronous Advantage Actor Critic (A3C)

Asynchronous Methods for Deep Reinforcement Learning

Volodymyr Mnih¹ Adrià Puigdomènech Badia¹ Mehdi Mirza^{1,2} Alex Graves¹ Tim Harley¹ Timothy P. Lillicrap¹ David Silver¹ Koray Kavukcuoglu ¹ ¹ Google DeepMind

² Montreal Institute for Learning Algorithms (MILA), University of Montreal

VMNIH@GOOGLE.COM ADRIAP@GOOGLE.COM MIRZAMOM@IRO.UMONTREAL.CA GRAVESA@GOOGLE.COM THARLEY@GOOGLE.COM COUNTZERO@GOOGLE.COM DAVIDSILVER@GOOGLE.COM KORAYK@GOOGLE.COM

Asynchronous Advantage Actor Critic (A3C)

Adds a few tricks

1. Multiple parallel workers to collect rollouts in different copies of the same env and update the global policy and value models asynchronously

- 2. n-step returns
- 3. Entropy regularization
- 4. Share neural network weights for actor and critic

Parallel actors

online actor-critic algorithm:

1. take action
$$\mathbf{a} \sim \pi_{\theta}(\mathbf{a}|\mathbf{s})$$
, get $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)$
2. update \hat{V}^{π}_{ϕ} using target $r + \gamma \hat{V}^{\pi}_{\phi}(\mathbf{s}')$ works best with a batch (e.g., parallel workers)
3. evaluate $\hat{A}^{\pi}(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \gamma \hat{V}^{\pi}_{\phi}(\mathbf{s}') - \hat{V}^{\pi}_{\phi}(\mathbf{s})$
4. $\nabla_{\theta} J(\theta) \approx \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}|\mathbf{s}) \hat{A}^{\pi}(\mathbf{s}, \mathbf{a})$
5. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

synchronized parallel actor-critic

asynchronous parallel actor-critic

N-Step Returns

- At convergence we want $V^{\pi}(s_t) = E_{\pi}[r_t + \gamma V^{\pi}(s_{t+1})]$
- So given experience (s_t, a_t, r_t, s_{t+1}) , TD methods push $V^{\pi}(s_t)$ towards $r_t + \gamma V^{\pi}(s_{t+1})$
- But why only look one step ahead? [1-step return]
- In practice we have experience that looks like this $(s_0, a_0, r_0, s_1, s_2, a_2, r_2, s_3, \dots, s_t, a_t, r_t, s_{t+1}, \dots)$ What if we pushed $V^{\pi}(s_t)$ towards $r_t + \gamma r_{t+1} + \gamma^2 V^{\pi}(s_{t+2})$? Or even pushed $V^{\pi}(s_t)$ towards $r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \gamma^3 V^{\pi}(s_{t+3})$?

We can generalize this idea to use n-step returns!

N-Step Returns for A3C updates

Given
$$(s_0, a_0, r_0, s_1, a_1, r_1, s_2, \dots, s_t, a_t, r_t, s_{t+1}, \dots, r_{T-1}, s_T)$$

Compute advantage for each state. If s_T is a terminal state, then define $V_w^{\pi}(s_T)=0$

$$A(s_t, a_t) = \sum_{i=0}^{T-t-1} \gamma^i r_{t+i} + \gamma^{T-t} V_w^{\pi}(s_T) - V_w^{\pi}(s_t)$$

Accumulate gradients for each state and update policy using policy gradient

$$\nabla_{\theta} \log \pi_{\theta}(a_t|s_t) A_w(s_t, a_t)$$

Update Value function based on TD-error using MSE loss

$$\nabla_{w} \sum_{t=0}^{T-1} \left(\sum_{i=0}^{T-t-1} \gamma^{i} r_{t+i} + \gamma^{T-t} V_{w}^{\pi}(s_{T}) - V_{w}^{\pi}(s_{t}) \right)^{2}$$

Shannon Entropy

Average level of uncertainty associated with a random variable's possible outcomes.

$$P(X = heads) = \frac{1}{2} \qquad P(X = tails) = \frac{1}{2}$$

$$\mathrm{H}(X):=-\sum_{x\in\mathcal{X}}p(x)\log p(x)$$

Policy Entropy Bonus

Improves exploration by discouraging premature convergence to suboptimal deterministic policies.

Head (h) or Tails (t) probability (%)

Parameter Sharing

online actor-critic algorithm:

1. take action
$$\mathbf{a} \sim \pi_{\theta}(\mathbf{a}|\mathbf{s})$$
, get $(\mathbf{s}, \mathbf{a}, \mathbf{s}', r)$
2. update \hat{V}^{π}_{ϕ} using target $r + \gamma \hat{V}^{\pi}_{\phi}(\mathbf{s}')$
3. evaluate $\hat{A}^{\pi}(\mathbf{s}, \mathbf{a}) = r(\mathbf{s}, \mathbf{a}) + \gamma \hat{V}^{\pi}_{\phi}(\mathbf{s}') - \hat{V}^{\pi}_{\phi}(\mathbf{s})$
4. $\nabla_{\theta} J(\theta) \approx \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}|\mathbf{s}) \hat{A}^{\pi}(\mathbf{s}, \mathbf{a})$
5. $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

+ simple & stable- no shared features between actor & critic

Generalized Advantage Estimation (GAE)

Published as a conference paper at ICLR 2016

HIGH-DIMENSIONAL CONTINUOUS CONTROL USING GENERALIZED ADVANTAGE ESTIMATION

John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan and Pieter Abbeel Department of Electrical Engineering and Computer Science University of California, Berkeley {joschu,pcmoritz,levine,jordan,pabbeel}@eecs.berkeley.edu

Can we construct all possible n-step returns and average them?

$$\hat{A}_{n}^{\pi}(\mathbf{s}_{t}, \mathbf{a}_{t}) = \sum_{t'=t}^{t+n} \gamma^{t'-t} r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) - \hat{V}_{\phi}^{\pi}(\mathbf{s}_{t}) + \gamma^{n} \hat{V}_{\phi}^{\pi}(\mathbf{s}_{t+n})$$

Smaller n results in lower variance, but higher bias

$$\hat{A}_{\text{GAE}}^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = \sum_{n=1}^{\infty} w_n \hat{A}_n^{\pi}(\mathbf{s}_t, \mathbf{a}_t)$$

weighted combination of n-step returns

 $w_n \propto \lambda^{n-1}$ exponential falloff where $\lambda \in [0,1]$

$$\hat{A}_{\text{GAE}}^{\pi}(\mathbf{s}_{t}, \mathbf{a}_{t}) = \sum_{t'=t}^{\infty} (\gamma \lambda)^{t'-t} \delta_{t'} \qquad \qquad \delta_{t'} = r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_{t'+1}) - \hat{V}_{\phi}^{\pi}(\mathbf{s}_{t'})$$
similar effect as discount!

GAE Pseudo Code

#predict values based on sequence of states in a trajectory

```
vals = predict_values(states)
```

the next two lines implement GAE-Lambda advantage calculation

```
deltas = rews[:-1] + gamma * vals[1:] - vals[:-1]
```

gae = discount_cumsum(deltas, gamma * lam)

Proximal Policy Optimization (PPO)

Proximal Policy Optimization Algorithms

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov OpenAI {joschu, filip, prafulla, alec, oleg}@openai.com

Why does the policy gradient work?

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \hat{A}_{i,t}^{\pi}$$

1. Estimate $\hat{A}^{\pi}(\mathbf{s}_t, \mathbf{a}_t)$ for current policy π 2. Use $\hat{A}^{\pi}(\mathbf{s}_t, \mathbf{a}_t)$ to get *improved* policy π'

look familiar?

Why does the policy gradient work?

$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \hat{A}_{i,t}^{\pi}$$

1. Estimate $\hat{A}^{\pi}(\mathbf{s}_t, \mathbf{a}_t)$ for current policy π 2. Use $\hat{A}^{\pi}(\mathbf{s}_t, \mathbf{a}_t)$ to get *improved* policy π'

look familiar?

policy iteration algorithm:

$$\square 1. \text{ evaluate } A^{\pi}(\mathbf{s}, \mathbf{a})$$

2. set $\pi \leftarrow \pi'$

Proximal Policy Optimization (PPO)

- One of the most popular deep RL algorithms
- Used to train ChatGPT and other LLMs

Motivation:

- Many Policy Gradient algorithms have stability problems.
- This can be avoided if we avoid making too big of a policy update.

https://huggingface.co/blog/deep-rl-ppo

Measure how much we are changing policy compared with previous policy using a ratio:

$$ratio_t(\theta) = \frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_k}(a_t|s_t)}$$

Clip policy gradient update based on this ratio:

$$\theta_{k+1} = \arg \max_{\theta} \mathop{\mathrm{E}}_{s,a \sim \pi_{\theta_k}} \left[L(s, a, \theta_k, \theta) \right]$$
$$L(s, a, \theta_k, \theta) = \min \left(\frac{\pi_{\theta}(a|s)}{\pi_{\theta_k}(a|s)} A^{\pi_{\theta_k}}(s, a), \quad \operatorname{clip} \left(\frac{\pi_{\theta}(a|s)}{\pi_{\theta_k}(a|s)}, 1 - \epsilon, 1 + \epsilon \right) A^{\pi_{\theta_k}}(s, a) \right)$$

Simpler way to write clip objective:

$$L(s, a, \theta_k, \theta) = \min\left(\frac{\pi_{\theta}(a|s)}{\pi_{\theta_k}(a|s)} A^{\pi_{\theta_k}}(s, a), g(\epsilon, A^{\pi_{\theta_k}}(s, a))\right)$$

where

$$g(\epsilon, A) = \begin{cases} (1+\epsilon)A & A \ge 0\\ (1-\epsilon)A & A < 0 \end{cases}$$

https://spinningup.openai.com/en/latest/algorithms/ppo.html

Simpler way to write clip objective:

$$L(s, a, \theta_k, \theta) = \min\left(\frac{\pi_{\theta}(a|s)}{\pi_{\theta_k}(a|s)} A^{\pi_{\theta_k}}(s, a), g(\epsilon, A^{\pi_{\theta_k}}(s, a))\right)$$

What if the advantage is positive?

where

$$g(\epsilon, A) = \begin{cases} (1+\epsilon)A & A \ge 0\\ (1-\epsilon)A & A < 0 \end{cases}$$

$$L(s, a, \theta_k, \theta) = \min\left(\frac{\pi_{\theta}(a|s)}{\pi_{\theta_k}(a|s)}, (1+\epsilon)\right) A^{\pi_{\theta_k}}(s, a)$$

We want to increase $\pi_{\theta}(a|s)$, but not too much! Once $\pi_{\theta}(a|s) > (1 + \epsilon)\pi_{\theta_k}(a|s)$ the min kicks in and limits our policy update.

https://spinningup.openai.com/en/latest/algorithms/ppo.html

Simpler way to write clip objective:

$$L(s, a, \theta_k, \theta) = \min\left(\frac{\pi_{\theta}(a|s)}{\pi_{\theta_k}(a|s)} A^{\pi_{\theta_k}}(s, a), g(\epsilon, A^{\pi_{\theta_k}}(s, a))\right)$$

What if the advantage is negative?

where

 $g(\epsilon, A) = \begin{cases} (1+\epsilon)A & A \ge 0\\ (1-\epsilon)A & A < 0 \end{cases}$

$$L(s, a, \theta_k, \theta) = \max\left(\frac{\pi_{\theta}(a|s)}{\pi_{\theta_k}(a|s)}, (1-\epsilon)\right) A^{\pi_{\theta_k}}(s, a)$$

We want to decrease $\pi_{\theta}(a|s)$, but not too much! Once $\pi_{\theta}(a|s) < (1 - \epsilon)\pi_{\theta_k}(a|s)$ the max kicks in and limits our policy update.

https://spinningup.openai.com/en/latest/algorithms/ppo.html

Algorithm 1 PPO-Clip

- 1: Input: initial policy parameters θ_0 , initial value function parameters ϕ_0
- 2: for k = 0, 1, 2, ... do
- 3: Collect set of trajectories $\mathcal{D}_k = \{\tau_i\}$ by running policy $\pi_k = \pi(\theta_k)$ in the environment.
- 4: Compute rewards-to-go \hat{R}_t .
- 5: Compute advantage estimates, \hat{A}_t (using any method of advantage estimation) based on the current value function V_{ϕ_k} .
- 6: Update the policy by maximizing the PPO-Clip objective:

$$\theta_{k+1} = \arg\max_{\theta} \frac{1}{|\mathcal{D}_k|T} \sum_{\tau \in \mathcal{D}_k} \sum_{t=0}^T \min\left(\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta_k}(a_t|s_t)} A^{\pi_{\theta_k}}(s_t, a_t), \ g(\epsilon, A^{\pi_{\theta_k}}(s_t, a_t))\right),$$

typically via stochastic gradient ascent with Adam.

7: Fit value function by regression on mean-squared error:

$$\phi_{k+1} = \arg\min_{\phi} \frac{1}{|\mathcal{D}_k|T} \sum_{\tau \in \mathcal{D}_k} \sum_{t=0}^T \left(V_{\phi}(s_t) - \hat{R}_t \right)^2,$$

typically via some gradient descent algorithm. 8: end for

Lots of other tricks used

- Additional advantage normalization
- Early stopping with KL-divergence

• Etc.

The 37 Implementation Details of Proximal Policy Optimization: <u>https://iclr-blog-</u> <u>track.github.io/2022/03/25/ppo-implementation-</u> <u>details/</u>