
Actor Critic and Proximal Policy Optimization

Instructor: Daniel Brown --- University of Utah

Announcement
▪ Mid semester feedback. Thank you!

▪ What y’all like?

▪ Exploratory assignments, interesting topics, no exams ☺

▪ Experience-based learning

▪ Paper reading

▪ What y’all want to see changed?

▪ Zoom options if you are sick.

▪ Quizzes: more structure, no paper passing, more frequent, eliminate…

▪ End a minute or two early.

▪ More reading assignments

▪ Record lectures…

▪ Less math!

▪ More consistency in math.

▪ More math!

▪ Harder/deeper programming assignments

Announcement
▪ What helps y’all learn?

▪ Quizzes, In-class lectures, Recordings, Programming assignments to practice concepts

▪ What can I do to improve learning?

▪ More paper reading assignments, examples of applications.

▪ Add subtitles to zoom recordings

▪ More interactions and Q&A in lectures

▪ Move at a faster pace

▪ More structure in homework questions.

▪ Harder homework problems

▪ Post lecture slides earlier.

▪ Discuss pseudo code in lectures

▪ More math!

▪ Example project ideas.
3

Announcement

▪ Homework 5

4

Rough Taxonomy of RL Algorithms

5

Dexterous Manipulation

6

OpenAI 5: DOTA 2

7

RLHF in ChatGPT

8

What is the goal of RL?

▪ Find a policy that maximizes expected utility (discounted
cumulative rewards)

𝜋∗ = 𝑎𝑟𝑔max
𝜋

 𝐸𝜋 ෍

𝑡=0

∞

𝛾𝑡𝑅 𝑠, 𝜋 𝑠 , 𝑠′

The Policy Gradient (REINFORCE)

▪ We can now perform gradient ascent to improve our policy!

∇𝜃𝐽 𝜋𝜃 = 𝐸𝜏∼𝜋𝜃
෍

𝑡=0

𝑇

∇𝜃 log 𝜋𝜃(𝑎𝑡|𝑠𝑡) 𝑅(𝜏)

𝜃𝑘+1 ← 𝜃𝑘 + 𝛼∇𝜃𝐽 𝜋𝜃 ቚ
𝜃𝑘

≈
1

|𝐷|
෍

𝜏∈𝐷

෍

𝑡=0

𝑇

∇𝜃 log 𝜋𝜃(𝑎𝑡|𝑠𝑡) 𝑅(𝜏)

Estimate with a

sample mean over a

set D of policy rollouts

given current

parameters

Simple Pytorch Pseudocode

11

for episode in range(num_episodes):

 state = env.reset()

 trajectory = []

 while True:

 action, log_prob = select_action(policy_net, state)

 next_state, reward, done, _ = env.step(action)

 trajectory.append((log_prob, reward))

 state = next_state

 if done:

 break

Compute returns and policy loss

 log_probs, rewards = zip(*trajectory)

 returns = compute_returns(rewards, gamma)

 policy_loss = -sum(log_prob * G

 for log_prob, G in zip(log_probs, returns))

 # Update policy network

 optimizer.zero_grad()

 policy_loss.backward()

 optimizer.step()

Policy Gradient RL Algorithms

▪ We can directly update the policy to achieve high reward.

▪ Pros:

▪ Directly optimize what we care about: Utility!

▪ Naturally handles continuous action spaces!

▪ Can learn specific probabilities for taking actions.

▪ Often more stable than value-based methods (e.g. DQN).

▪ Cons:

▪ On-Policy -> Sample-inefficient we need to collect a large set of new
trajectories every time the policy parameters change.

▪ Q-Learning methods are usually more data efficient since they can reuse
data from any policy (Off-Policy) and can update per sample.

Many forms of policy gradients

What we derived:
Follows a similar

derivation:

https://medium.com/@thechrisyoon/deriving-policy-

gradients-and-implementing-reinforce-f887949bd63

▪ What is better about the second approach?

▪ Focuses on rewards in the future!

▪ Less variance -> less noisy gradients.

https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63
https://medium.com/@thechrisyoon/deriving-policy-gradients-and-implementing-reinforce-f887949bd63

Many forms of policy gradients

Looks familiar….

▪ Now we have an approach that combines a parameterized policy
and a parameterized value function!

Baselines

∇𝜃𝐽 𝜋𝜃 = 𝐸𝜏∼𝜋𝜃
෍

𝑡=0

𝑇

∇𝜃 log 𝜋𝜃(𝑎𝑡|𝑠𝑡) 𝑅(𝜏)

≈
1

|𝐷|
෍

𝜏∈𝐷

෍

𝑡=0

𝑇

∇𝜃 log 𝜋𝜃(𝑎𝑡|𝑠𝑡) 𝑅(𝜏)

Baselines

But can we do this?

Many forms of policy gradients

Advantage Function

18

19

Actor Critic Algorithms

▪ Combining value learning with direct policy learning

▪ One example is policy gradient using the advantage function

∇𝜃𝐽 𝜋𝜃 = 𝐸𝜏∼𝜋𝜃
෍

𝑡=0

𝑇

∇𝜃 log 𝜋𝜃 𝑎𝑡 𝑠𝑡 𝑄𝑤
𝜋𝜃(𝑠𝑡, 𝑎𝑡)

𝜃𝑘+1 ← 𝜃𝑘 + 𝛼∇𝜃𝐽 𝜋𝜃 ቚ
𝜃𝑘

𝛿 = (𝑟𝑡 + 𝛾𝑄𝑤
𝜋𝜃 𝑠𝑡+1,𝑎𝑡+1 − 𝑄𝑤

𝜋𝜃(𝑠𝑡 , 𝑎𝑡))

𝑤𝑘+1 ← 𝑤𝑘 + 𝛼𝛿𝑡∇𝜃𝑄𝑤
𝜋_𝜃

Q Actor Critic Algorithm Pseudo Code

21

The Advantage Function

▪ Benefits?

▪ Downsides?

Temporal Difference Learning

▪ Big idea: learn from every experience!
▪ Update V(s) each time we experience a transition (s, a, s’, r)

▪ Likely outcomes s’ will contribute updates more often

▪ Temporal difference learning of values
▪ Policy still fixed, still doing evaluation!

▪ Move values toward value of whatever successor occurs: running average

(s)

s

s, (s)

s’

Sample of V(s):

Update to V(s):

The Advantage Function

Advantage Actor Critic (A2C)

▪ Combining value learning with direct policy learning

𝛿𝑡 = 𝑟 𝑠𝑡 , 𝑎𝑡 + 𝛾𝑉𝜋 𝑠𝑡+1 − 𝑉𝜋(𝑠𝑡)

𝑤𝑘+1 ← 𝑤𝑘 + 𝛼𝑀𝑆𝐸(value, target)

TD-Learning update

https://medium.com/@dixitaniket76/advantage-actor-critic-a2c-algorithm-explained-and-implemented-in-pytorch-

dc3354b60b50

≈ 𝑟 𝑠𝑡 , 𝑎𝑡 + 𝛾𝑉𝜋 𝑠𝑡+1 − 𝑉𝜋(𝑠𝑡)

Actor Critic

Value = 𝑉𝜋(𝑠𝑡)

Target = 𝑟 𝑠𝑡 , 𝑎𝑡 + 𝛾𝑉𝜋 𝑠𝑡+1

Policy gradient update

Quiz

▪ Calculate and interpret ∇𝜃log 𝜋(𝑎|𝑠) for a 1-dimensional
Gaussian policy

26

Asynchronous Advantage Actor Critic (A3C)

27

Asynchronous Advantage Actor Critic (A3C)

▪ Adds a few tricks

 1. Multiple parallel workers to collect rollouts in different
copies of the same env and update the global policy and value
models asynchronously

 2. n-step returns

 3. Entropy regularization

 4. Share neural network weights for actor and critic

28

Parallel actors

29

N-Step Returns

▪ At convergence we want 𝑉𝜋 𝑠𝑡 = 𝐸𝜋[𝑟𝑡 + 𝛾𝑉𝜋 𝑠𝑡+1]

▪ So given experience (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1), TD methods push
𝑉𝜋 𝑠𝑡 towards 𝑟𝑡 + 𝛾𝑉𝜋 𝑠𝑡+1

▪ But why only look one step ahead? [1-step return]

▪ In practice we have experience that looks like this
(𝑠0, 𝑎0, 𝑟0, 𝑠1, 𝑠2, 𝑎2, 𝑟2, 𝑠3, … , 𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1, …)

What if we pushed 𝑉𝜋 𝑠𝑡 towards 𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑉𝜋 𝑠𝑡+2 ?

Or even pushed 𝑉𝜋 𝑠𝑡 towards 𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 + 𝛾3𝑉𝜋 𝑠𝑡+3 ?

We can generalize this idea to use n-step returns!

N-Step Returns for A3C updates

Given (𝑠0, 𝑎0, 𝑟0, 𝑠1, 𝑎1, 𝑟1, 𝑠2, … , 𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1, … 𝑟𝑇−1, 𝑠𝑇)

𝐴 𝑠𝑡 , 𝑎𝑡 = ෍

𝑖=0

𝑇−𝑡−1

𝛾𝑖𝑟𝑡+𝑖 + 𝛾𝑇−𝑡𝑉𝑤
𝜋 𝑠𝑇 − 𝑉𝑤

𝜋(𝑠𝑡)

∇𝜃 log 𝜋𝜃 𝑎𝑡 𝑠𝑡 𝐴𝑤(𝑠𝑡 , 𝑎𝑡)

Compute advantage for each state. If 𝑠𝑇 is a terminal state, then define 𝑉𝑤
𝜋 𝑠𝑇 =0

Accumulate gradients for each state and update policy using policy gradient

Update Value function based on TD-error using MSE loss

∇𝑤 ෍

𝑡=0

𝑇−1

෍

𝑖=0

𝑇−𝑡−1

𝛾𝑖𝑟𝑡+𝑖 + 𝛾𝑇−𝑡𝑉𝑤
𝜋 𝑠𝑇 − 𝑉𝑤

𝜋 𝑠𝑡

2

Shannon Entropy

▪ Average level of uncertainty associated with a random variable’s
possible outcomes.

Policy Entropy Bonus

▪ Improves exploration by discouraging premature convergence to
suboptimal deterministic policies.

Parameter Sharing

34

Generalized Advantage Estimation (GAE)

35

▪ Can we construct all possible n-step returns and average them?

where 𝜆 ∈ [0,1]

Smaller n results in lower variance, but higher bias

GAE Pseudo Code

37

#predict values based on sequence of states in a trajectory

vals = predict_values(states)

the next two lines implement GAE-Lambda advantage calculation

deltas = rews[:-1] + gamma * vals[1:] - vals[:-1]

gae = discount_cumsum(deltas, gamma * lam)

Proximal Policy Optimization (PPO)

38

Why does the policy gradient work?

39

Why does the policy gradient work?

40

Proximal Policy Optimization (PPO)

▪ One of the most popular deep RL algorithms

▪ Used to train ChatGPT and other LLMs

Motivation:

▪ Many Policy Gradient algorithms have stability problems.

▪ This can be avoided if we avoid making too big of a policy
update.

https://huggingface.co/blog/deep-rl-ppo

https://huggingface.co/blog/deep-rl-ppo

Proximal Policy Iteration (PPO)

▪ Measure how much we are changing policy compared with
previous policy using a ratio:

▪ Clip policy gradient update based on this ratio:

𝑟𝑎𝑡𝑖𝑜𝑡 𝜃 =
𝜋𝜃(𝑎𝑡|𝑠𝑡)

𝜋𝜃𝑘
(𝑎𝑡|𝑠𝑡)

Proximal Policy Iteration (PPO)

▪ Simpler way to write clip objective:

where

https://spinningup.openai.com/en/latest/algorithms/ppo.html

Proximal Policy Iteration (PPO)

▪ Simpler way to write clip objective:

where

https://spinningup.openai.com/en/latest/algorithms/ppo.html

What if the advantage is positive?

We want to increase 𝜋𝜃 𝑎 𝑠 , but not too much!

Once 𝜋𝜃 𝑎 𝑠 > 1 + 𝜖 𝜋𝜃𝑘
(𝑎|𝑠) the min kicks in

and limits our policy update.

Proximal Policy Iteration (PPO)

▪ Simpler way to write clip objective:

where

https://spinningup.openai.com/en/latest/algorithms/ppo.html

What if the advantage is negative?

We want to decrease 𝜋𝜃 𝑎 𝑠 , but not too much!

Once 𝜋𝜃 𝑎 𝑠 < 1 − 𝜖 𝜋𝜃𝑘
(𝑎|𝑠) the max kicks in

and limits our policy update.

Lots of other tricks used

▪ Additional advantage normalization

▪ Early stopping with KL-divergence

▪ Etc.

49

The 37 Implementation Details of Proximal
Policy Optimization: https://iclr-blog-

track.github.io/2022/03/25/ppo-implementation-

details/

https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/

	Slide 1: Actor Critic and Proximal Policy Optimization
	Slide 2: Announcement
	Slide 3: Announcement
	Slide 4: Announcement
	Slide 5: Rough Taxonomy of RL Algorithms
	Slide 6: Dexterous Manipulation
	Slide 7: OpenAI 5: DOTA 2
	Slide 8: RLHF in ChatGPT
	Slide 9: What is the goal of RL?
	Slide 10: The Policy Gradient (REINFORCE)
	Slide 11: Simple Pytorch Pseudocode
	Slide 12: Policy Gradient RL Algorithms
	Slide 13: Many forms of policy gradients
	Slide 14: Many forms of policy gradients
	Slide 15: Baselines
	Slide 16: Baselines
	Slide 17: Many forms of policy gradients
	Slide 18
	Slide 19
	Slide 20: Actor Critic Algorithms
	Slide 21: Q Actor Critic Algorithm Pseudo Code
	Slide 22: The Advantage Function
	Slide 23: Temporal Difference Learning
	Slide 24: The Advantage Function
	Slide 25: Advantage Actor Critic (A2C)
	Slide 26: Quiz
	Slide 27: Asynchronous Advantage Actor Critic (A3C)
	Slide 28: Asynchronous Advantage Actor Critic (A3C)
	Slide 29: Parallel actors
	Slide 30: N-Step Returns
	Slide 31: N-Step Returns for A3C updates
	Slide 32: Shannon Entropy
	Slide 33: Policy Entropy Bonus
	Slide 34: Parameter Sharing
	Slide 35: Generalized Advantage Estimation (GAE)
	Slide 36
	Slide 37: GAE Pseudo Code
	Slide 38: Proximal Policy Optimization (PPO)
	Slide 39: Why does the policy gradient work?
	Slide 40: Why does the policy gradient work?
	Slide 41: Proximal Policy Optimization (PPO)
	Slide 42
	Slide 43: Proximal Policy Iteration (PPO)
	Slide 45: Proximal Policy Iteration (PPO)
	Slide 46: Proximal Policy Iteration (PPO)
	Slide 47: Proximal Policy Iteration (PPO)
	Slide 48
	Slide 49: Lots of other tricks used

