
Advanced Behavioral Cloning

Instructor: Daniel Brown



Implicit Behavioral Cloning

• Paper: https://arxiv.org/abs/2109.00137

• Video: https://www.youtube.com/watch?v=QslGqRUSRzs 
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https://arxiv.org/abs/2109.00137
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Action Chunking with Transformers (ACT)

• Paper: https://arxiv.org/pdf/2304.13705

• Videos: https://tonyzhaozh.github.io/aloha/ 
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https://arxiv.org/pdf/2304.13705
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Variational Autoencoders (VAEs)

• Autoencoders learn latent 
representations
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Variational Autoencoders (VAEs)

• Autoencoders learn latent 
representations

• VAEs map input into a 
distribution over latent 
variables z

• Loss function is reconstruction 
plus KL divergence
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Conditional Variational Autoencoders (CVAEs)

• Encoder and decodre both 
condition on extra info y

• Loss function is reconstruction 
plus KL divergence
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Transformers

• State of the art ways to ingest and output sequential data.
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Neural language modeling

[BOS]⟶                     ⟶ Sylvester 
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[BOS] Sylvester ⟶                     ⟶ Stallone 
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Neural language modeling



[BOS] Sylvester Stallone ⟶                     ⟶ has 
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Neural language modeling



[BOS] Sylvester Stallone has ⟶                     ⟶ made 
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Neural language modeling



“+” softmax   

i-th dimension ～ 

the “probability” [not 
really] that the next 
token is the i-th token 

in the vocabulary 

the size of the 
vector 
representation
up to and 
including the 
current 
token 

✕

the number of tokens in the vocabulary

=

the logits vector

representation(current token) output matrix

select the token with 
the high(est) 
“probability” as a 
token to display 
(generate)

Read about other sampling strategies here: https://huggingface.co/blog/how-to-generate 

[BOS] Sylvester Stallone has 

https://huggingface.co/blog/how-to-generate


[BOS] Sylvester Stallone has ⟶                     ⟶ made 
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Neural sequence modeling

Problems:
• How do we deal with different length inputs?
• How do we model long-range dependencies?



Recurrent Neural Networks

● Standard RNN

● Long short-term memory (LSTM)
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/



Large Language Models













Perform dot product between query and all keys to get a raw score 
for each previous word (including current word).



Normalize these scores via a softmax to get a probability 
distribution. Then return a weighted sum of the values.
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Diffusion Policy

• Paper: https://arxiv.org/pdf/2303.04137v4 

• Videos: https://diffusion-policy.cs.columbia.edu/ 
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https://arxiv.org/pdf/2303.04137v4
https://diffusion-policy.cs.columbia.edu/


Denoising Diffusion (high-level)
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