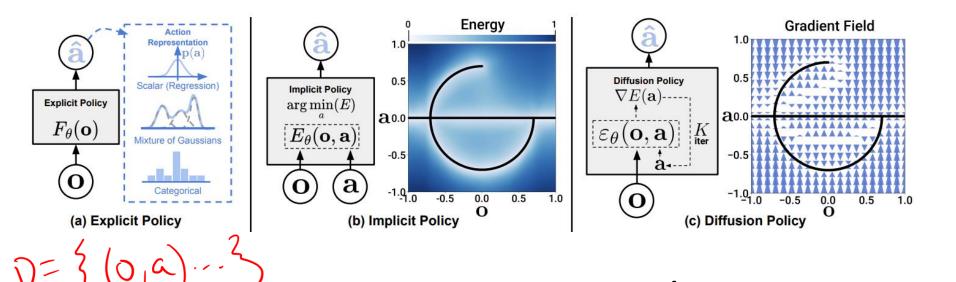
Advanced Behavioral Cloning

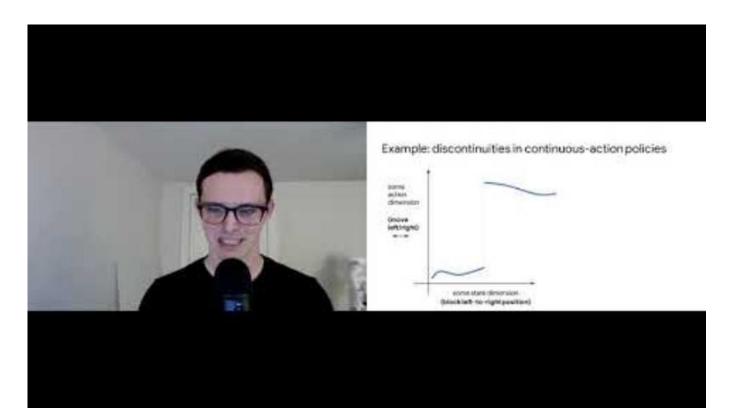


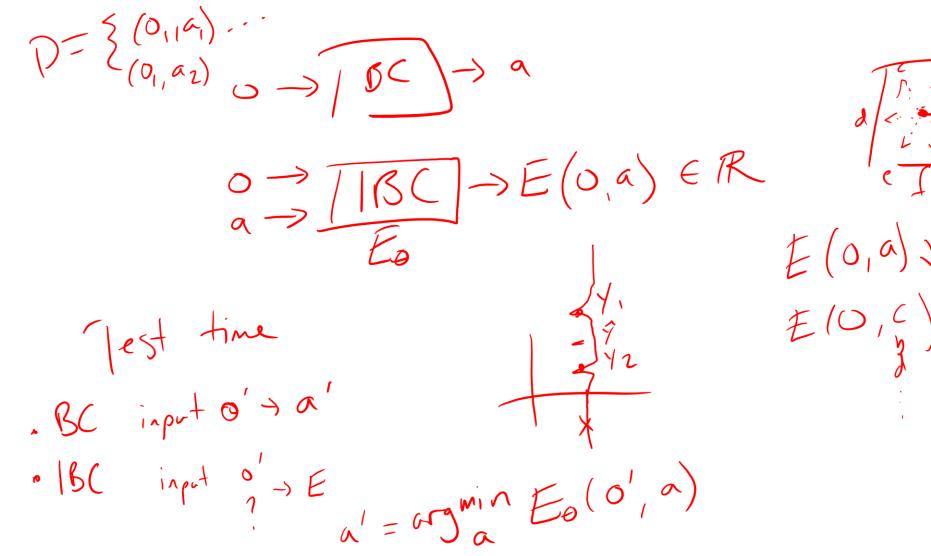
Motel (-) a

Instructor: Daniel Brown

Implicit Behavioral Cloning

- Paper: https://arxiv.org/abs/2109.00137
- Video: <u>https://www.youtube.com/watch?v=QslGqRUSRzs</u>



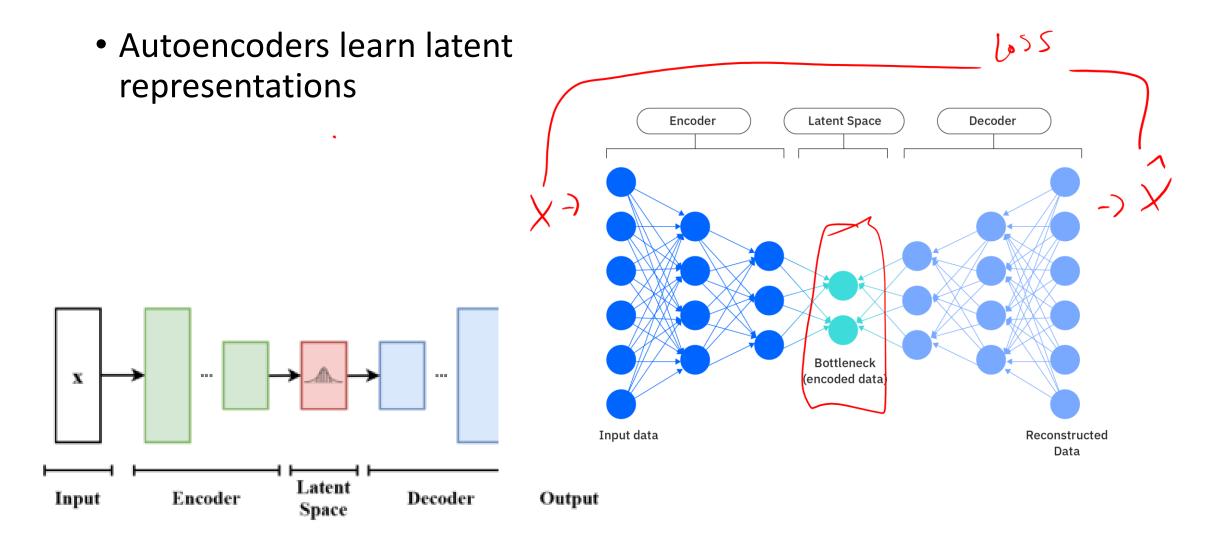


E(0,a)E(0,c)T

Action Chunking with Transformers (ACT)

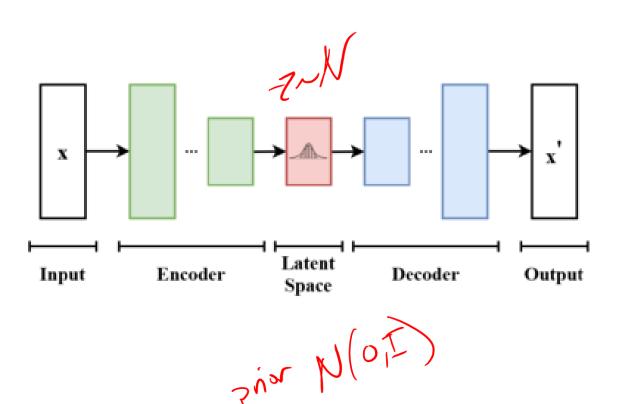
- Paper: https://arxiv.org/pdf/2304.13705
- Videos: https://tonyzhaozh.github.io/aloha/

Variational Autoencoders (VAEs)



Variational Autoencoders (VAEs)

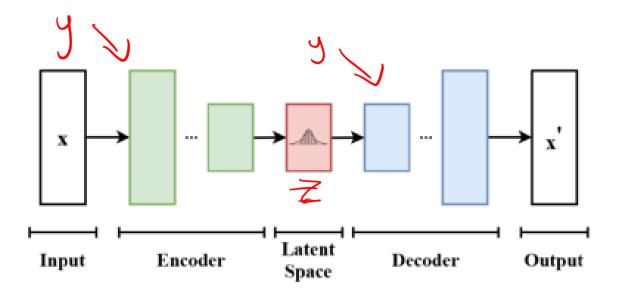
- Autoencoders learn latent representations
- VAEs map input into a distribution over latent variables z
- Loss function is reconstruction plus KL divergence



$$\mathcal{L} = \mathbb{E}_{q(z|x)}[\log p(x|z)] - D_{\mathrm{KL}}(q(z|x)||p(z))$$

Conditional Variational Autoencoders (CVAEs)

• Encoder and decodre both condition on extra info y

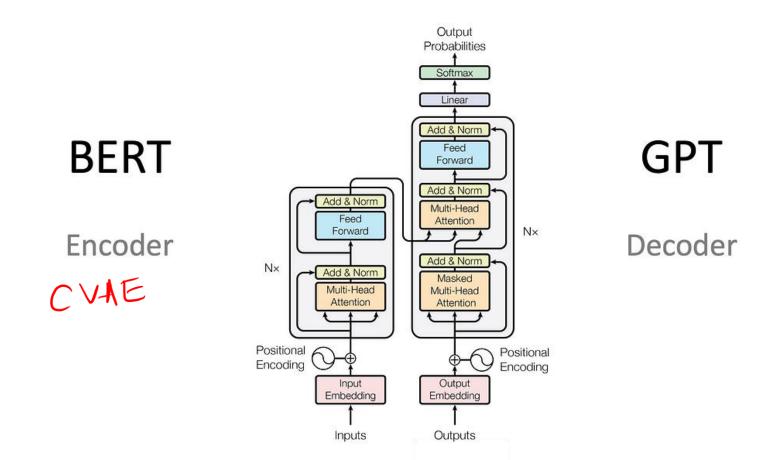


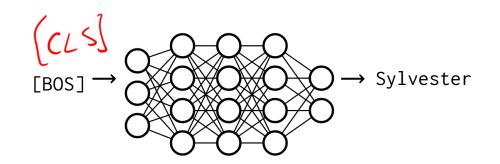
• Loss function is reconstruction plus KL divergence

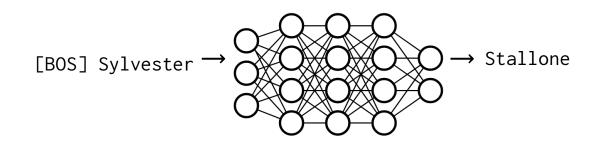
$$\mathcal{L} = \mathbb{E}_{q(z|x,y)}[\log p(x|z,y)] - D_{ ext{KL}}(q(z|x,y)||p(z|y))$$

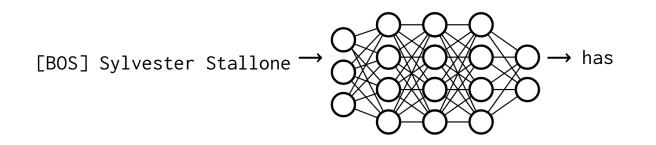
Transformers

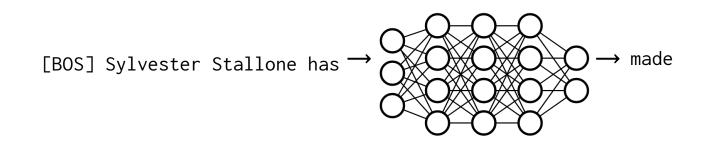
• State of the art ways to ingest and output sequential data.

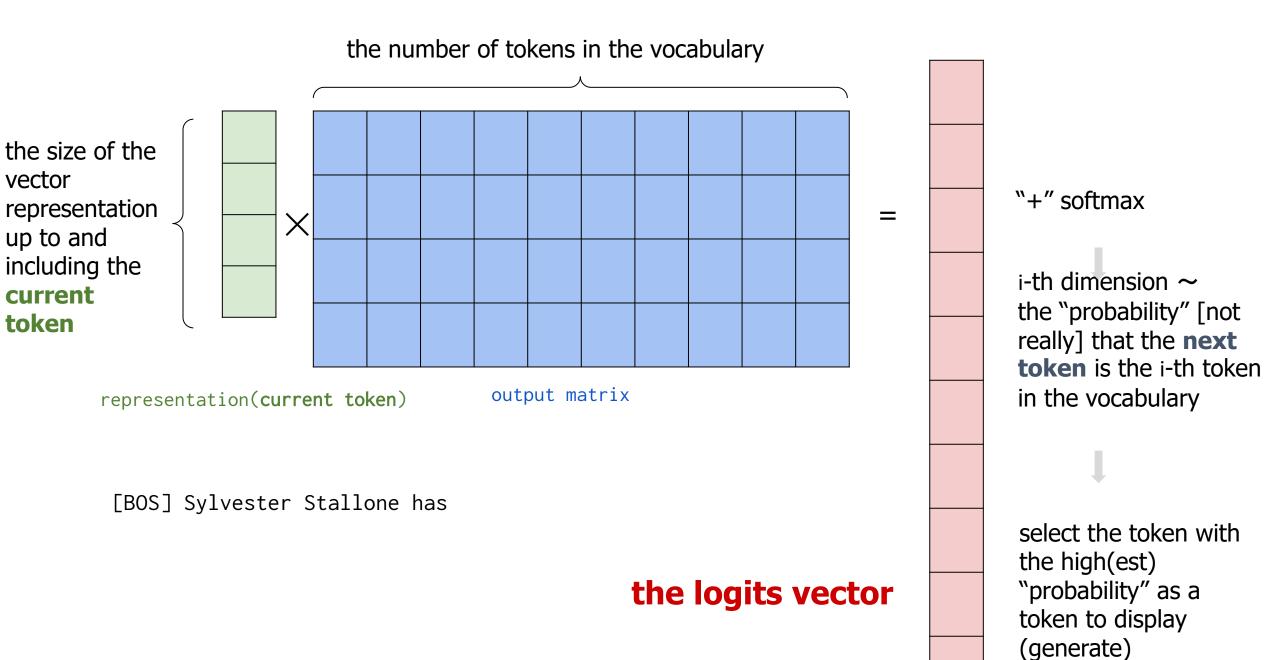






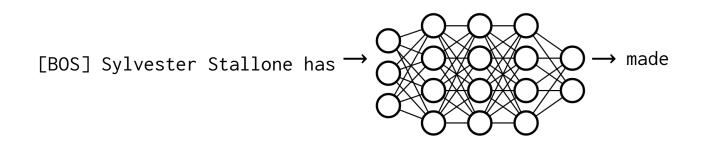






Read about other sampling strategies here: <u>https://huggingface.co/blog/how-to-generate</u>

Neural sequence modeling

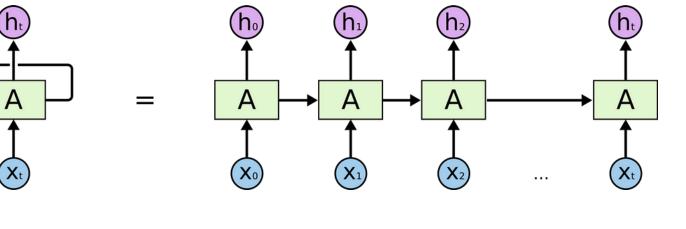


Problems:

- How do we deal with different length inputs?
- How do we model long-range dependencies?

Recurrent Neural Networks

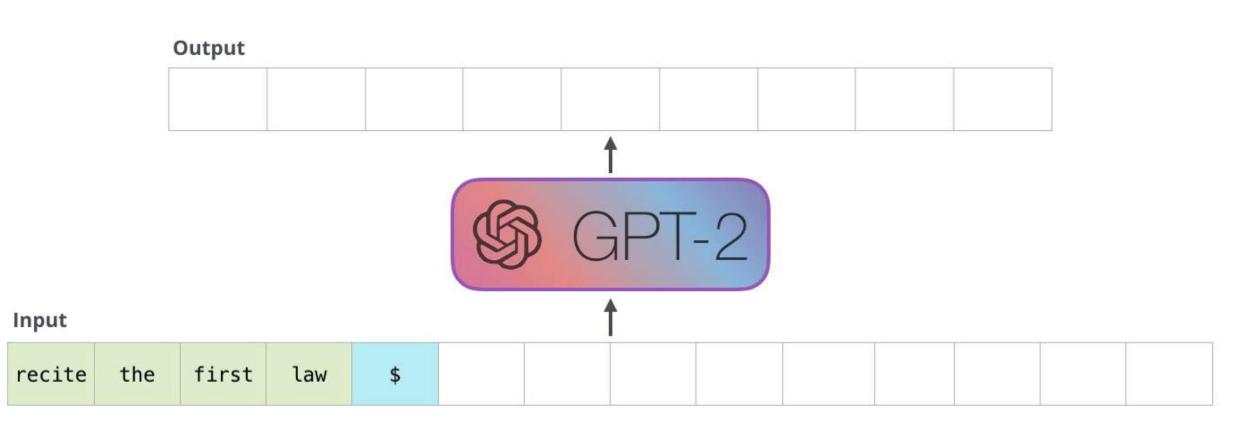
• Standard RNN

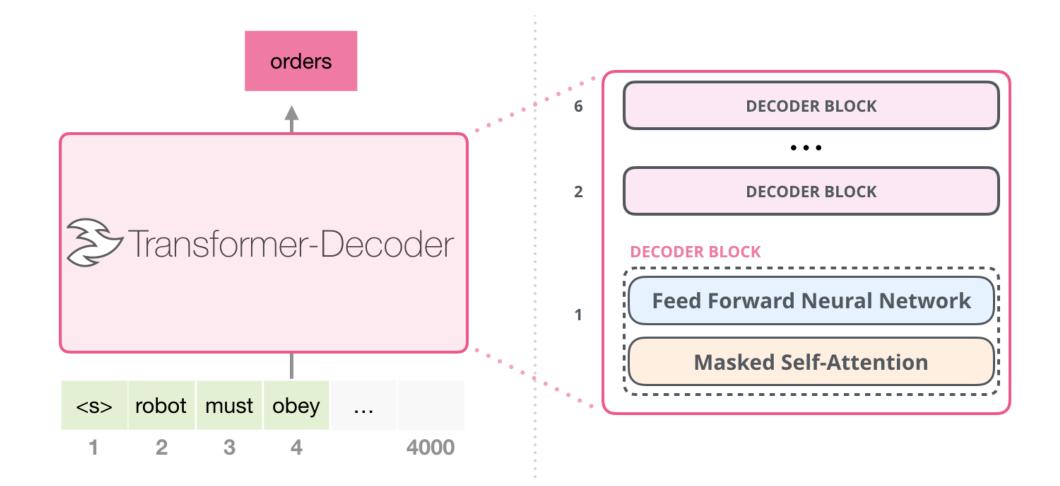


• Long short-term memory (LSTM)

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Large Language Models

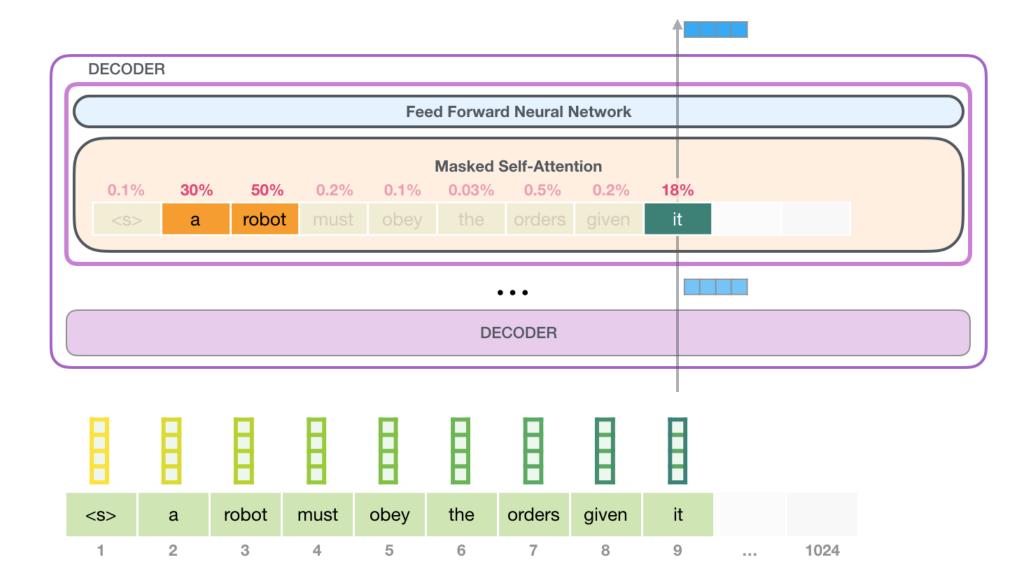


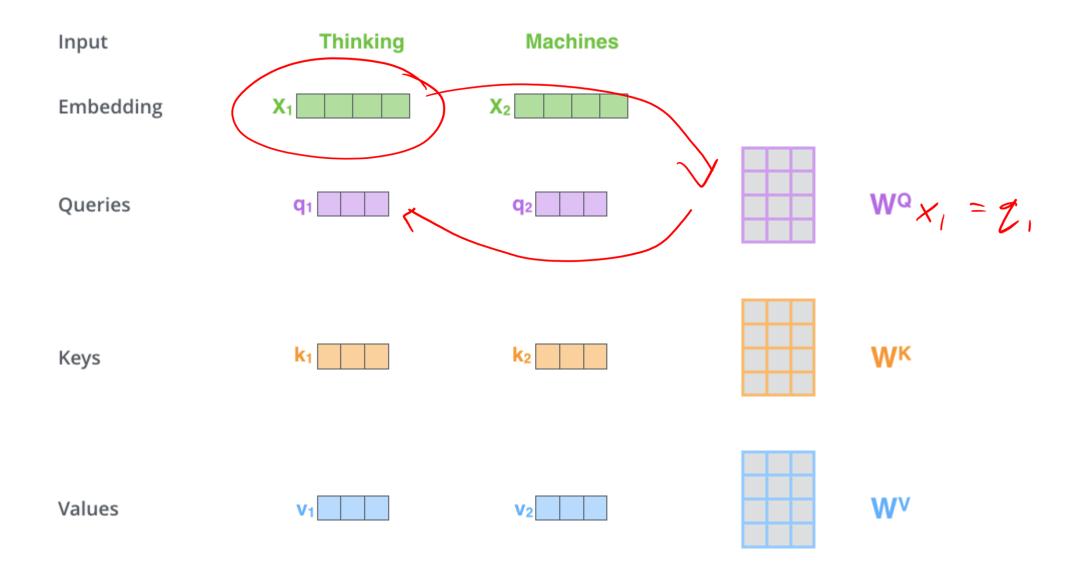


1	†	<u>+</u> +	<u> </u>	1	1
		DECODER			
		DECODER			
		DECODER			

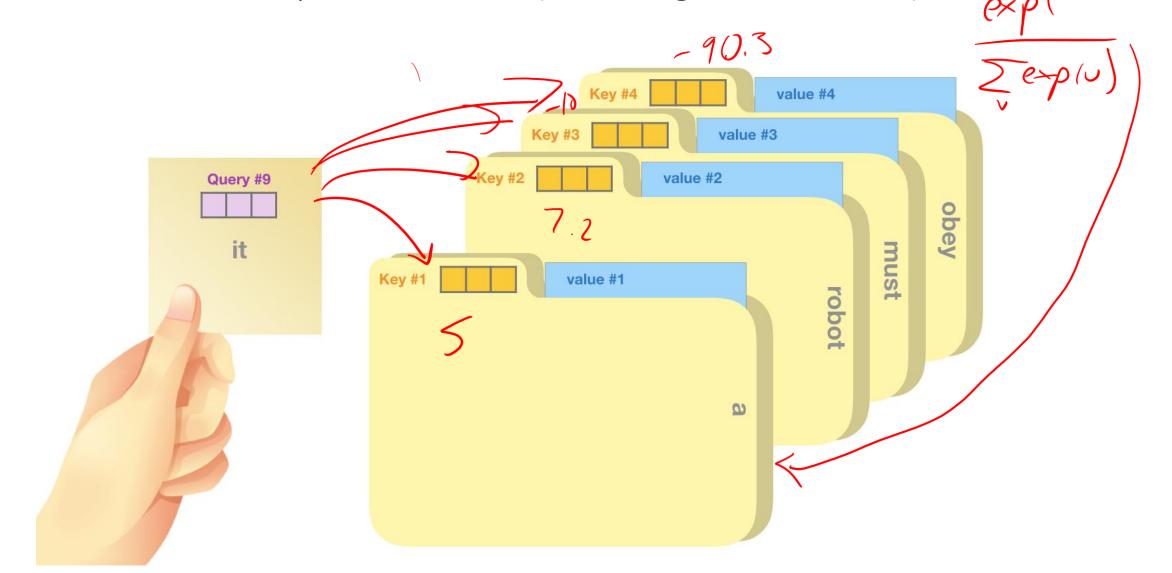
<\$>	The							
1	2	3	4	5	6	7	8	 1024



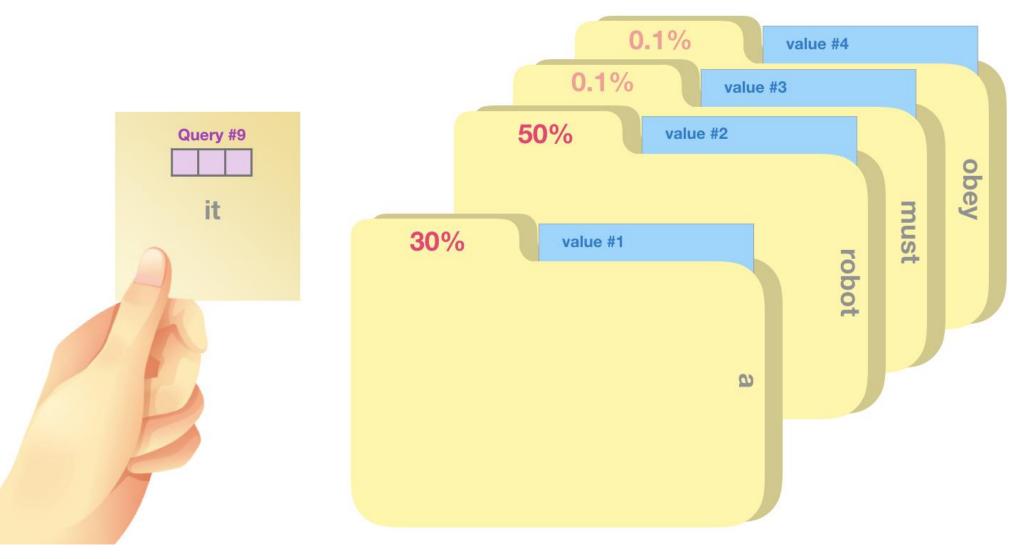




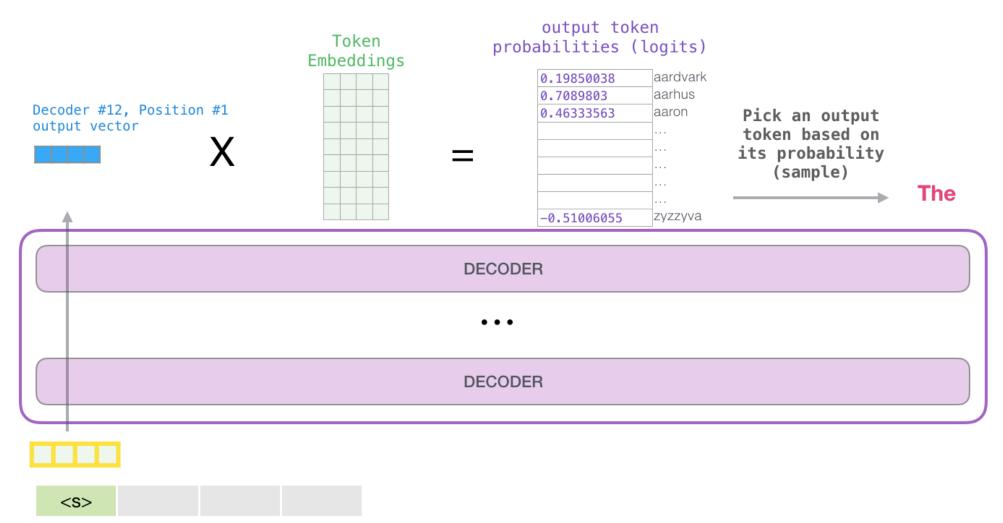
Perform dot product between query and all keys to get a raw score for each previous word (including current word).



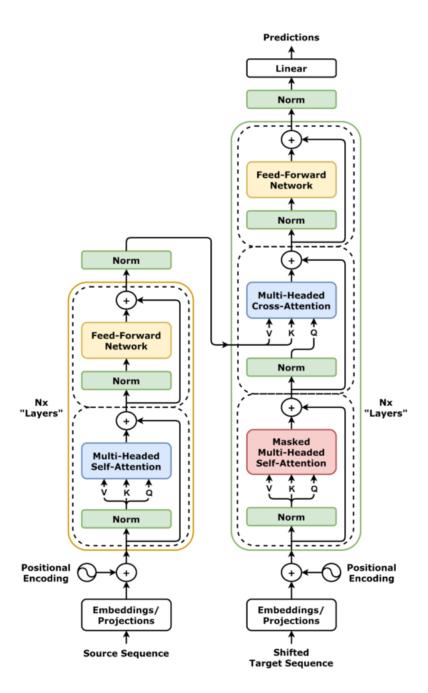
Normalize these scores via a softmax to get a probability distribution. Then return a weighted sum of the values.



Word	Value vector	Score	Value X Score
<\$>		0.001	
а		0.3	
robot		0.5	
must		0.002	
obey		0.001	
the		0.0003	
orders		0.005	
given		0.002	
it		0.19	
		Sum:	



1 2 ... 1024



Diffusion Policy

- Paper: https://arxiv.org/pdf/2303.04137v4
- Videos: https://diffusion-policy.cs.columbia.edu/

$$d=0 \quad N(0, I)$$
Denoising Diffusion (high-level)
$$P(X_{t+1} \mid X_t) = \mathcal{N}(X_t \mid V \neq X_t, (I - \alpha_t) I)$$

$$Noise$$

$$Moise$$

$$P(X_{t+1} \mid X_t) = \mathcal{N}(X_t \mid V \neq X_t, (I - \alpha_t) I)$$

$$P(X_{t+1} \mid X_t) = \mathcal{N}(X_t \mid V \neq X_t, (I - \alpha_t) I)$$

$$Noise$$

$$Noise$$

$$P(X_{t+1} \mid X_t) = \mathcal{N}(X_t \mid V \neq X_t, I)$$

$$P(X_{t+1} \mid X_t) = \mathcal{N}(X_t \mid V \neq X_t, I)$$

$$P(X_{t+1} \mid X_t) = \mathcal{N}(X_t \mid V \neq X_t, I)$$

$$P(X_{t+1} \mid X_t) = \mathcal{N}(X_t \mid V \neq X_t, I)$$

$$P(X_{t+1} \mid X_t) = \mathcal{N}(X_t \mid V \neq X_t, I)$$

$$P(X_{t+1} \mid X_t) = \mathcal{N}(X_t \mid V \neq X_t, I)$$

$$P(X_{t+1} \mid X_t) = \mathcal{N}(X_t \mid V \neq X_t, I)$$

$$P(X_{t+1} \mid X_t) = \mathcal{N}(X_t \mid V \neq X_t, I)$$

$$P(X_{t+1} \mid X_t) = \mathcal{N}(X_t \mid V \neq X_t, I)$$

$$P(X_{t+1} \mid X_t) = \mathcal{N}(X_t \mid V \neq X_t, I)$$

$$P(X_{t+1} \mid X_t) = \mathcal{N}(X_t \mid V \neq X_t, I)$$

$$P(X_{t+1} \mid X_t) = \mathcal{N}(X_t \mid V \neq X_t, I)$$

$$P(X_{t+1} \mid X_t) = \mathcal{N}(X_t \mid V \neq X_t, I)$$

$$P(X_{t+1} \mid X_t) = \mathcal{N}(X_t \mid V \neq X_t, I)$$

$$P(X_t \mid X_t) = \mathcal{N}(X_t \mid V \neq X_t, I)$$

$$P(X_t \mid X_t) = \mathcal{N}(X_t \mid V \neq X_t, I)$$

$$P(X_t \mid X_t) = \mathcal{N}(X_t \mid V \neq X_t, I)$$

$$P(X_t \mid X_t) = \mathcal{N}(X_t \mid V \neq X_t, I)$$

$$P(X_t \mid X_t) = \mathcal{N}(X_t \mid V \neq X_t, I)$$

$$P(X_t \mid X_t) = \mathcal{N}(X_t \mid V \neq X_t, I)$$

$$P(X_t \mid X_t) = \mathcal{N}(X_t \mid V \neq X_t, I)$$

$$P(X_t \mid X_t) = \mathcal{N}(X_t \mid V \neq X_t, I)$$

$$P(X_t \mid X_t) = \mathcal{N}(X_t \mid V \neq X_t, I)$$

$$P(X_t \mid X_t) = \mathcal{N}(X_t \mid V \neq X_t, I)$$

$$P(X_t \mid X_t) = \mathcal{N}(X_t \mid V \neq X_t, I)$$

$$P(X_t \mid X_t) = \mathcal{N}(X_t \mid V \neq X_t, I)$$

$$P(X_t \mid X_t) = \mathcal{N}(X_t \mid V \neq X_t, I)$$

$$P(X_t \mid X_t) = \mathcal{N}(X_t \mid V \neq X_t, I)$$

$$P(X_t \mid X_t) = \mathcal{N}(X_t \mid V \neq X_t, I)$$

$$P(X_t \mid X_t) = \mathcal{N}(X_t \mid X_t)$$

$$P(X_t \mid X_t) = \mathcal{N}(X_t$$