CS 6300: Artificial Intelligence

Reinforcement Learning IV: AlphaGo

‘ o ooe
00:08:32
YOTYAN -
O 4O e e
® ® - 9000 _
oA AS ) ©  ©
e s "ale

AlphaGo 000e0

Google DeepMind

X ? ) (‘
® 00 ad @ A (- LEEsEDOL
N 0 09 gee & | 00:00:27

Instructor: Daniel Brown --- University of Utah



Announcements

Mid-semester feedback is open! Due Feb 26th.
No Class on Wednesday, but reading assignment.
Final project groups due March 10

Final project paragraph pitches due March 17th



Rough Taxonomy of RL Algorithms
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Policy Gradient Recap

1. Start with random policy parameters 6,

. Run the policy in the environment to collect N rollouts
(episodes) of length T and save returns of each trajectory.
ar ~ e (- Ist) = (S0, Ao, 70, S1, A1, T4y w0 s 1y ST41)

D ={tq,..Tn}, R = {R(11),...R(ty)}

. Compute policy gradient

(T
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. Update policy parameters =0
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. Repeat (Go to 2)




Policy Gradient RL Algorithms

= We can directly update the policy to achieve high reward.
= Pros:

" Directly optimize what we care about: Utility!

= More stable than Q-Learning methods like DQN and scales well to high-
dimensional continuous control tasks.

= Cons:

" On-Policy -> Sample-inefficient we need to collect a large set of new
trajectories every time the policy parameters change.

" Q-Learning methods are usually more data efficient since they can reuse
data from any policy (Off-Policy)



Actor Critic Algorithms

= Combining value learning with direct policy learning
" One example is policy gradient using the advantage function
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How to get an Al to play Go

" Branching factor close to 250
" Depth close to 150
= O(2507150) ~=5x107350







How AlphaGo works

= Monte Carlo Tree Search (MCTS)

= How Al chooses next move

= Value Network
= Al assess new positions using this network

" Reinforcement Learning
" Trains the Al by using the current best agent to play against itself
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Search Trees

’ _ This is now / start
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= Asearch tree:

= A “what if” tree of plans and their outcomes

The start state is the root node

Children correspond to successors

Nodes show states, but correspond to PLANS that achieve those states

For most problems, we can never actually build the whole tree



Searching with a Search Tree
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= Search:
* Expand out potential plans (tree nodes)
" Maintain a fringe of partial plans under consideration
" Try to expand as few tree nodes as possible



Min-Max Search Tree
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Resource Limits

" Problem: In realistic games, cannot search to leaves! max

min

v

= Solution: Depth-limited search
= |nstead, search only to a limited depth in the tree

= Replace terminal utilities with an evaluation function for
non-terminal positions

" Guarantee of optimal play is gone /O\

= More plies makes a BIG difference

? ? ? ?




gfk Monte Carlo Tree Search (MCTS)

L .
= Selection

= Starting at root node, select child nodes recursively in tree until a leaf
node L (unexplored node in fringe) is reached

= Expansion

= Chosen leaf node, L, is added to the search tree and children are added
to fringe.

= Evaluation (simulation)
" Run a simulated playout from L until you reach terminal state.

" Backup

= Using simulation result, go back up the tree and update statistics
(values and visit counts) of encountered nodes.



Example

N

Uses some kind of exploration function to select.
Based on empirical value estimate + exploration bonus
based on visit counts (optimism in the face of uncertainty).
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Example

SIMULATION
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How to scale MICTS to Go?

= Standard MCTS achieved strong amateur play but was never able
to beat a Go professional.

AlphaGo has several additional bells and whistles
1. Imitation Learning policy learned from human gameplay

2. Fast rollout policy to sample actions in MCTS
3. RL policy that improves on Imitation Learning policy
4. Value function trained to predict value of RL policy during self-

play
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Supervised/Imitation Learning

" Maximize likelihood of human
actions given game state

Ps(anls)

Trained on 30 million Go
games scraped from the
Internet.

Network outputs a softmax
distribution over all
possible moves.

Update o to maximize
logps(anls)

Standard classification
problem



Feature Engineering

" Lots more than just where the black and white stones are:

Extended Data Table 2 | Input features for neural networks

Feature # of planes  Description

Stone colour 3 Player stone / opponent stone / empty
Ones 1 A constant plane filled with 1
Turns since 8 How many turns since a move was played
Liberties 8 Number of liberties (empty adjacent points)
Capture size 8 How many opponent stones would be captured
Self-atari size 8 How many of own stones would be captured
Liberties after move 8 Number of liberties after this move 1s played
Ladder capture 1  Whether a move at this point is a successful ladder capture
Ladder escape I Whether a move at this point is a successful ladder escape
Sensibleness 1  Whether a move is legal and does not fill its own eyes
Zeros I A constant plane filled with 0
|

Player color Whether current player is black

Feature planes used by the policy network (all but last feature) and value network (all features).

55.7% accuracy with
just stone colors.

57% accuracy with all
features. Leads to
much stronger play.



Supervised/Imitation Learning

" Maximize likelihood of human
actions given game state

pa(ahls)

Rollout policy SL policy network

P, P,
24% 57%

Accuracy Accuracy
2US m m 3ms

Much smaller. More hand-
engineered features.

Human expert positions



Policy Gradient Reinforcement Learning

Rollout Rolicy SL policy network RL policy network
A
A
Px P Initialize policy P,
Then run RL

Human expert positions Self-play positions



RL Policy Gradient Algorithm

Start with pretrained imitation learning policy
Pick random previous version of RL policy as opponent

Run Policy Gradient RL with 7}, =+1 if win, -1 if lose

n T¢

Pr+1 < Pr + a— zz % log'pp(at‘st)( Vond U(St))
Results: 1=11t= baseline

= 80% win rate against imitation policy

= 85% win rate against best open source Go program (100,000
simulations per move)

" I[mpressive since AlphaGo policy is not even using search!



Reinforcement Learning

Rollout policy SL policy network RL policy network Value network
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Reinforcement Learning

Rollout policy SL policy network RL policy network Value network Train to output true
value (+1/-1) of policy.
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Direct Evaluation (Monte Carlo Rollouts)

= Goal: Compute values for each state under &t

" |dea: Average together observed sample values

= Act accordingtom

= Every time you visit a state, write down what the
sum of discounted rewards turned out to be

= Average those samples

= This is called direct evaluation or Monte Carlo

evaluation T | 1 N T
V™ (s) = Ey Z yire| = Nz Z YT
t=0 ]




Learning a Value Network

. . d . Evaluation of board positions (predicting win/loss)
SuperV|se Learmng using value function vs. Monte Carlo Rollouts with

. different policies.
" Gjven state s i

= Same target for all states in o

SL policy network
d £game. |
g 0151 ... mL policy network

—— Value network

0.50 ez
= Train V(s) to match true 0454

O 0.40 - 33 RS-
reward (+1/-1) at end of 5

2s 0354 ... Uniform random
game (MSE loss). S ¢ 0.30- rollout policy

= @ .

E,‘ %_ 0054 " Fast rollout policy
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0.10 +—mr—vr—vr———————————
" Uses self-play to generate 15 45 75 105 135 165 195 225 255 >285
tons of games and samples Move number
states to avoid ove rfitting by Value network can evaluate board positions
i . as well as running Monte Carlo rollouts
S|mply memorizing games. using SL or RL policy but using 15,000

times less compute!



Fast Lookahead Search via MCTS

= Monte Carlo Tree Search to select actions via lookahead search
= Supervised Learning (SL) policy predicts probability for each legal action
= Value function is used to predict win/loss from any given state in tree

= Fast rollout policy (baby version of SL policy) is used for fast random
rollouts to get a second opinion of value of a state.

32



Fast Lookahead Search via MCTS

= Selection/Expansion

L
" Each edge of search tree stores +
I
= Action value Q(s,a
. (5,2) maxyy @ +u(P)
= Visit count N(s,a) S i
= Prior probability P(s,a) —+O' ]

= Action selection based on value and
exploration bonus

o
a; =argmax(Q(s,a)+ u(spa)) :ﬁ

a

| |
Q + u(P) .Am

P(S’ a) * When expanding a leaf node, Supervised Learning
1+ N(s, a) (SL) policy predicts probability for each legal action
and stores these as P(s,a)

u(s,a)



Fast Lookahead Search via MCTS

= Selection/Expansion

1o -

" Each edge of search tree stores
= Action value Q(s,a)

i 1} 1 J'_": ‘

= Visit count N(s,a) __+_._ +

* Prior probability P(s,a) | |

= Action selection based on value and

exploration bonus O 4
" o (1) 14

at:argmax(Q(st,a) +u(st,a)) /I\P

P(S’ a) * When expanding a leaf node, Supervised Learning
1+ N(s, a) (SL) policy predicts probability for each legal action
and stores these as P(s,a)

u(s,a)



Fast Lookahead Search via MCTS

= Evaluation

T

= After expanding a leaf node get two
opinions on the value of the state e 1O

. . ——+—0 + o
" Evaluate with value function vg | 41
= Returns predicted probability of win

" Evaluate with fast rollout policy p;, | / ( orer )
v,

= Play against itself for one game

= Super fast. Trained on human games. I

= Combine to estimate value -p
T

V(SL)Z(I—)\)V;({‘L)‘FAZL r(ﬁ)




Fast Lookahead Search via MCTS

" Backup

= Update action values and visit
counts of all traversed edges.

n
L . Number of times edge
N(s,a)= 231 1(s, a,1) (s,a) was selected.
1=

Qssa) = —1— S 1(s,a,1)V(s)

N(s,a) ;

Mean evaluation of all simulations
passing though edge (s,a).




AlphaGo MCTS Overview

Selection b Expansion c Evaluation d Backup

mak O+u

kit

Q + u(P) A’lax

ﬁ

Prior probs P(s,a) ka i ,I e
Action Selection determined by SL policy r (ﬁ) Zéé ﬁ ﬁ:,;;

a;=argmax(Q(s,a)+ u(sya))

Vis)=(1—=Nvg(sy)+ Az Nisa) =3 1(s.a,)
P(s,a) -

u(s,a) T NG.a)

Where is the RL policy?? Q(s,a)=
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