Multi-Armed Bandits
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Applications

* Online Advertising and Recommendation
* Clinical Trials

e Robotics

* Dynamic Pricing
* Search Engine Optimization
* Education and Learning Platforms
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* Arms A = {aq, ..., ax}

e Each arm is associated with an unknown reward distribution

J
* Rewards 1;:(a;) i O:(
* Possible Goals —
A+ Maximize cumulative reward (Minimize regret) < %
* Best arm identification s
* Standard Assumptions |-+
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* Independence: Rewards from each arm are independent
* Stationarity: Reward distributions don’t change over time
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How should we solve this problem?
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Exploration







2.3 The 10-armed Testbed

To roughly assess the relative effectiveness of the greedy and e-greedy action-value
methods, we compared them numerically on a suite of test problems. This was a set
of 2000 randomly generated k-armed bandit problems with k¥ = 10. For each bandit

problem, such as the one shown in Figure 2.1, the action values, g.(a), a = 1,...,10,
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Figure 2.1: An example bandit problem from the 10-armed testbed. The true value g«(a) of
each of the ten actions was selected according to a normal distribution with mean zero and unit
variance, and then the actual rewards were selected according to a mean g.(a) unit variance
normal distribution, as suggested by these gray distributions.



Sutton/Barto figure
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* 10 arms o
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Boltzmann (Softmax) Exploration
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Chernoff-Hoeffding Inequality =¥
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* Let Xbe arandom variable in the range [0,1] and x¢, x5, ..., X,; be n
iIndependent and identically distributed samples of X.
= 1
* Let X = -).. x; (the empirical average)
nm : 5652,_&(@\%)5
* Then we have P(X = E[X] +¢) <e 2™, - | \ 1
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Some fun math =\
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+ P(X = E[X] +¢) < e72n¢

* Typically, we want to pick some kind of high confidence 1 — 6
such that we are very confident about our sample mean bei
close to the true expectation.
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* We can pick 4§ to be whatever we want, so let’s pick Qo 3\0 3
* If we select § = tlz % —> O - S>>
What is c?
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UCB1 (UCB = Upper Confidence Bound)
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Key Idea: Optimism in the face of uncertainty
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—¢ Play each action once to get initial averages of arm values
* Keep track of counts of pulls for each arm n;
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Regret .- o)
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* Define u*as the maximum expected payoff over all k arms

» Regret(T) =Tu* — X{_17¢

* Epsilon-Greedy Regret
ST
« UCB1 Regret < /\H“‘M

+ 0(/kTlog (1))
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* ANo-Regret algorithm is such that Regret(T)/T - 0asT — o
* Average regret goes to zero




Regret Bound vs. Turn
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k (number of arms): 1" (number of steps):

https://csed442-17f.github.io/LinUCB/



Regret Bound vs. Turn
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https://csed442-17f.github.io/LinUCB/



Other Bandit Topics

* Thompson Sampling
e Best Arm Identification
 Adversarial Bandits

* Contextual Bandits
e State information, s;
* Reward depends on state, and action

 Linear Bandits
* Type of contextual bandit

e Reward is a linear combin{cion of state feav’gures_. |
(50 = O Plep) = 2 Ocplse)
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