
Behavioral Cloning and 
Interactive Imitation Learning

Instructor: Daniel Brown
[Some slides adapted from Sergey Levine (CS 285) and Alina Vereshchaka (CSE4/510)]
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Brief Machine Learning Refresher

There are roughly 3 main branches of machine learning

• Supervised Learning

• Unsupervised Learning

• Reinforcement Learning
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Supervised Learning

• Setting/Assumptions: In supervised learning, the model is trained on 
labeled data, where the input data is paired with the correct output 
(i.e., the "ground truth").

• Goal: To learn a mapping from inputs to outputs so that the model 
can predict the output for new, unseen inputs.

• Common Use Cases:
• Classification (e.g., spam email detection, image recognition).
• Regression (e.g., predicting house prices, stock market trends).

• Example models:
• Linear regression, decision trees, support vector machines, and neural 

networks.
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Classification
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PyTorch Example
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import torch.nn as nn

import torch.optim as optim

class ClassificationNetwork(nn.Module): 

     def __init__(self, input_dim, num_classes): 

          super(ClassificationNetwork, self).__init__() 

          self.fc = nn.Linear(input_dim, num_classes) 

    

     def forward(self, x): 

          return self.fc(x) 

model = ClassificationNetwork(input_dim, num_classes) 

criterion = nn.CrossEntropyLoss() 

optimizer = optim.Adam(model.parameters(), lr=0.001) 

for epoch in range(num_epochs): 

     for inputs, labels in dataloader: 

          optimizer.zero_grad() 

          outputs = model(inputs)

          loss = criterion(outputs, labels) 

          loss.backward() 
          optimizer.step() 



Regression
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PyTorch Example
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import torch.nn as nn

import torch.optim as optim

class ClassificationNetwork(nn.Module): 

     def __init__(self, input_dim, num_classes): 

          super(ClassificationNetwork, self).__init__() 

          self.fc = nn.Linear(input_dim, num_classes) 

    

     def forward(self, x): 

          return self.fc(x) 

model = ClassificationNetwork(input_dim, num_classes) 

criterion = nn.CrossEntropyLoss() 

optimizer = optim.Adam(model.parameters(), lr=0.001) 

for epoch in range(num_epochs): 

     for inputs, labels in dataloader: 

          optimizer.zero_grad() 

          outputs = model(inputs)

          loss = criterion(outputs, labels) 

          loss.backward() 
          optimizer.step() 



Unsupervised Learning

• Setting/Assumptions: In unsupervised learning, the model is trained on 
data without labeled outputs. It seeks to find patterns, structures, or 
relationships in the data. No “ground truth” labels.

• Goal: To explore the data and identify meaningful clusters, associations, or 
representations.

• Common Use Cases:
• Clustering (e.g., customer segmentation).
• Dimensionality reduction (e.g., PCA for visualization).
• Anomaly detection (e.g., fraud detection). 

• Example models:
• K-means clustering, hierarchical clustering, and autoencoders.
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Reinforcement Learning

• Setting/Assumptions: Reinforcement learning (RL) involves training an 
agent to make decisions by interacting with an environment. The agent 
learns through trial and error (receiving rewards and penalties), optimizing 
its behavior to maximize cumulative rewards.

• Goal: To learn a policy that maps states of the environment to actions that 
achieve the highest reward.

• Common Use Cases:
• Game-playing AI (e.g., AlphaGo, chess-playing bots).
• Robotics (e.g., autonomous navigation).
• Dynamic resource allocation (e.g., in networking or traffic management).

• Examples:
• Q-learning, Deep Q-Networks (DQN), and Proximal Policy Optimization (PPO).
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Reinforcement Learning

Action

Observation

Reward
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Reinforcement Learning

Action

Observation

Reward
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Reward engineering is hard!

Action

Observation

Reward
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Reward engineering is hard!

Action

Observation

Reward
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Reward engineering is hard!
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Reinforcement learning is hard…even with a 
reward function!
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Imitation Learning (Learning from Demonstrations):
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• Often showing is easier than telling.
• Alleviates problem of exploration.

Learn a policy from examples of good behavior.



Behavioral Cloning

Action

Observation

What would the 
human do?

Policy 𝜋

Action

Observation
Action
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Inverse Reinforcement Learning

Action

Observation

Why? What is the 
human’s reward

function?

Reward

Reward

Action

Observation
Action

Reward
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We’ll talk about this later in the 
semester!



Imitation Learning via Behavioral Cloning
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Live demo

python test_gym.py

python mountain_car_bc.py --num_demos 1
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ALVINN: One of the first imitation learning systems
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ALVINN: One of the first imitation learning systems
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What if you don’t have actions?
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Behavioral Cloning from Observation 
(Torabi et al. 2018)
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What could go wrong?



Distribution Shift
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Supervised 
Learning

Supervised 
Learning + Control

Train 𝑥, 𝑦 ∼ 𝐷 𝑠 ∼ 𝑃(⋅ |𝑠, 𝜋∗ 𝑠 )

Test 𝑥, 𝑦 ∼ 𝐷 𝑠 ∼ 𝑃(⋅ |𝑠, 𝜋 𝑠 )



But it still can work in practice…
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Bojarski et al. ‘16, NVIDIA



How?

29Bojarski et al. ‘16, NVIDIA
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human recovery policy



DAgger

34Ross et al. ‘11



DAgger has very nice theoretical guarantees.

35Ross et al. ‘11

Why might it be hard to implement in practice?
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DAgger has very nice theoretical guarantees.

37Ross et al. ‘11

Why might it be easy to implement in practice?



Learn from an Algorithmic Supervisor!

38Seita et al. 2020. “Deep Imitation Learning of Sequential Fabric Smoothing From an Algorithmic Supervisor”



But we don’t always have access to an algorithmic 
supervisor…
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Can we make DAgger more practical when dealing 
with real human labeling?
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Interactive IL
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Interactive IL
?

???
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Human-Gated Interactive IL

[3] M. Kelly, C. Sidrane, K. Driggs-Campbell, and M. J. Kochenderfer. HG-DAgger: Interactive Imitation 
Learning with Human Experts. ICRA 2019. 43



Human-Gated Interactive IL

[3] M. Kelly, C. Sidrane, K. Driggs-Campbell, and M. J. Kochenderfer. HG-DAgger: Interactive Imitation 
Learning with Human Experts. ICRA 2019. 44



Robot-Gated Interactive IL

[4] J. Zhang, K. Cho. Query-Efficient Imitation Learning for End-to-End Autonomous Driving. AAAI 2017.
[5] K. Menda, K. Driggs-Campbell, M. Kochenderfer. EnsembleDAgger: A Bayesian Approach to Safe Imitation 
Learning. IROS 2019.
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J. Zhang, K. Cho. Query-Efficient Imitation Learning for End-to-End Autonomous Driving. AAAI 2017.

Predicted action loss  = predicted difference 
between human and robot action.

Trained using held-out set of data from 
human.



When should a robot ask for help?
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?

Novel (and risky)



When should a robot ask for help?
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?
!

Novel (and risky) Risky (but not novel)



Novelty Estimation
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Novelty Estimation: Supervisor Mode
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Risk Estimation
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Risk Estimation
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Risk Estimation



Putting it all together…
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Putting it all together…

72

OR

SUPERVISOR 
MODE AND

Switch to 
SUPERVISOR 

MODE

Switch to 
AUTONOMOUS 

MODE

AUTONOMOUS 
MODE



Putting it all together…
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How do we deal with all the 
hyperparameters?
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Putting it all together…
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Putting it all together…
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Putting it all together…
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ThriftyDAgger

Hoque et al. "ThriftyDAgger: Budget-Aware Novelty and Risk Gating for Interactive Imitation Learning." CoRL 2021. 78

Target percent of time human 
wants to give interventions.



ThriftyDAgger

Hoque et al. "ThriftyDAgger: Budget-Aware Novelty and Risk Gating for Interactive Imitation Learning." CoRL 2021. 79



ThriftyDAgger

Hoque et al. "ThriftyDAgger: Budget-Aware Novelty and Risk Gating for Interactive Imitation Learning." CoRL 2021. 80



Hoque et al. "ThriftyDAgger: Budget-Aware Novelty and Risk Gating for Interactive Imitation Learning." CoRL 2021. 81



Hoque et al. "ThriftyDAgger: Budget-Aware Novelty and Risk Gating for Interactive Imitation Learning." CoRL 2021. 82



Hoque et al. "ThriftyDAgger: Budget-Aware Novelty and Risk Gating for Interactive Imitation Learning." CoRL 2021. 83



Hoque et al. "ThriftyDAgger: Budget-Aware Novelty and Risk Gating for Interactive Imitation Learning." CoRL 2021. 84



Hoque et al. "ThriftyDAgger: Budget-Aware Novelty and Risk Gating for Interactive Imitation Learning." CoRL 2021. 85



Hoque et al. "ThriftyDAgger: Budget-Aware Novelty and Risk Gating for Interactive Imitation Learning." CoRL 2021. 86



Human Demonstration
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Behavior Cloning

Hoque et al. "ThriftyDAgger: Budget-Aware Novelty and Risk Gating for Interactive Imitation Learning." CoRL 2021. 88



Behavior Cloning

Hoque et al. "ThriftyDAgger: Budget-Aware Novelty and Risk Gating for Interactive Imitation Learning." CoRL 2021. 89

ThriftyDAgger (autonomous)



Behavior Cloning

Hoque et al. "ThriftyDAgger: Budget-Aware Novelty and Risk Gating for Interactive Imitation Learning." CoRL 2021. 90

ThriftyDAgger (+human)ThriftyDAgger (autonomous)



User Study
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N=10 subjects each control 3 robots in simulation.

Robot-Gated Human-Gated



ThriftyDAgger Qualitative Results
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User Study Quantitative Results
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ThriftyDAgger had
• 21% fewer human interventions
• 57% more concentration pairs found
• 80% more throughput
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Scalable and safe robot fleets are possible when robots ask for 
help in ways that minimize human supervisor burden.



Next Time: Survey of Recent BC methods

• Choose your own adventure reading assignment
• Implicit Behavior Cloning

• Action Chunking Transformer

• Diffusion Policy

• Submit a paragraph before class summarizing at a high-level:
• What’s the problem the authors want to solve?

• Why is important?

• What is their proposed solution?

• What evidence do they give that their solution is good?

• What is one question you had about the paper?
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