Intro to Value-Based Reinforcement Learning

Instructor: Daniel Brown

University of Utah

[Some content borrowed from slides created by Dan Klein and Pieter Abbeel http://ai.berkeley.edu.]

What changes?

= Rather than planning, we now need to learn!
= No access to underlying MDP, can’t solve it with just computation
" You needed to actually act to figure it out
= Extension and generalization of Multi-Armed Bandits

" |[mportant ideas in reinforcement learning that came up
= Exploration: you have to try unknown actions to get information
= Exploitation: eventually, you have to use what you know
= Regret: even if you learn intelligently, you make mistakes
= Sampling: because of chance, you have to try things repeatedly
= Difficulty: learning can be much harder than solving a known MDP

Example: Learning to Walk

Initial A Learning Trial After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]

Example: Learning to Walk

Initial
[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — initial]

Example: Learning to Walk

Training
[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — training]

Example: Learning to Walk

-

Finished

[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — finished]

https://vision-locomotion.github.io/

LA » N~ ervvuullvsv

Google Acquires Artificial

Intelligence Startup DeepMind For
More Than $500M . .

Catherine Shu @catherineshu / 6:20 PM MST « January 26, 2014 ! Comment

oearcn Q

Regi

~~AO T i~k
eCrnuluncri+

Venture

DEEPMIND

YouTube T

The Arcade Learning Environment

ooDo s

A i OUUDoDOg L 1L DoDovoo b

ALPHAGO " se ""00e D _ e~
00:08:32 2 | ' - LEE SEDOL
. gee i |- 00:00:27

I ChatGPT

(R deepseek

Reinforcement Learning

\

Agent \

State: s .
Reward: r Actions: a
\Environment
= Basic idea:

= Receive feedback in the form of rewards

= Agent’s utility is defined by the reward function

= Must (learn to) act so as to maximize expected rewards
= All learning is based on observed samples of outcomes!

Why Reinforcement Learning?

" Takes inspiration from nature

= Often easier to encode a task as a sparse reward (e.g. recognize if

goal is achieved) but hard to hand-code how to act so reward is
maximized (e.g. Go)

" General purpose Al framework

Reinforcement Learning

= Still assume a Markov decision process (MDP):
= Asetofstatess e S
= A set of actions (per state) A
= A model T(s,a,s’) State:
= A reward function R(s,a,s’) Reward: r

= Still looking for a policy m(s)

= New twist: don’t know T or R

>/Agent\ \

~

Environment

(&

= |.e. we don’t know which states are good or what the actions do

= Must actually try actions and states out to learn

Actions: a

Offline (MDPs) vs. Online (RL)

-

J
$
a

Offline Solution Online Learning

Model-Based Learning

Simple View of Model-Based RL

= Model-Based Idea:

= Learn an approximate model based on experiences
= Solve for values as if the learned model were correct

= Step 1: Learn empirical MDP model
= Count outcomes s’ for each s, a
= Normalize to give an estimate of T'(s, a, s')
= Discover each R(s,a,s’) when we experience (s, a, s’)

= Step 2: Solve the learned MDP

= For example, use value iteration, as before

Sometimes Model of World is Known

ALPHAGO » Lol 4 o
10832 :, . ¢ LEE SEDOL
00:08:3 o gee B . 00:00:27

AlphaGo

Google DeepMind

Deep RL Makes a Big Splash!

nature

Explore content v About the journal v Publish with us v Subscribe

nature > letters > article

Published: 25 February 2015

Human-level control through deep reinforcement
learning

Volodymyr Mnih, Koray Kavukcuoglu &, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare,

Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig_Petersen, Charles Beattie, Amir

Sadik, loannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg & Demis Hassabis

When might RL be a good tool for your problem?

When might RL be a good tool for your problem?

" |s your problem a sequential decision making problem?

" Are there “actions” that effect the next “state”?

" Do you know the rules of these effects?

= Can you write down a clear objective/score/reward/cost?
" Do you have a simulator?

" | ots of examples of sequences of decisions and their long-term
consequences?

" |s it unclear what to do in each state? Exploration required?
= Are you looking for unique/creative/super-human solutions?

When might RL not be a good tool?

When might RL not be a good tool?

Single step or static problem

No clear reward signal.

Reward signal is unavailable or very hard to write down.
Well-known model of the environment.

Deterministic environment

Low-tolerance for exploration and trial and error

No need for adaptive or novel solutions. The goal is to perform
the task in a very predictable way.

Model-Free Learning

Passive Reinforcement Learning

Passive Reinforcement Learning

= Simplified task: policy evaluation
= |nput: a fixed policy m(s)
= You don’t know the transitions T(s,a,s’)
= You don’t know the rewards R(s,a,s’)
" Goal: learn the state values

" |n this case:
= Learner is “along for the ride”
= No choice about what actions to take
= Just execute the policy and learn from experience
= This is NOT offline planning! You actually take actions in the world.

Direct Evaluation (Monte Carlo Evaluation)

= Goal: Compute values for each state under &t

" |dea: Average together observed sample values

= Act accordingtom

= Every time you visit a state, write down what the
sum of discounted rewards turned out to be

= Average those samples

= This is called direct evaluation

Problems with Direct Evaluation

= What’s good about direct evaluation?
" |t's easy to understand
" |t doesn’t require any knowledge of T, R

" |t eventually computes the correct average values,
using just sample transitions

= \What bad about it?

® |t wastes information about state connections

= Each state must be learned separately
= So, it takes a long time to learn

Why Not Use Policy Evaluation?

= Simplified Bellman updates calculate V for a fixed policy:

* Each round, replace V with a one-step-look-ahead layer over V m(s)

Vo (s) =0 [7(s)

Vig1(8) < ZT(S, 7(s),s)[R(s,m(s),s") + V(5] X,S;"i/t/ks),s’

= This approach fully exploited the connections between the states
= Unfortunately, we need T and R to do it!

= Key question: how can we do this update to V without knowing T and R?
" |n other words, how to we take a weighted average without knowing the weights?

Sample-Based Policy Evaluation?

= \We want to improve our estimate of V by computing these averages:

Vkﬂ—|—1(3) — ZT(S,W(S), SHR(s,7(s),s’) + ’YV];T(S/)]

S
" |dea: Take samples of outcomes s’ (by doing the action!) and average

sample; = R(s,m(s),s7) + ’)/V]Z(Sll)
samples = R(s,m(s),s5) + YV (s5) ’(i; \
samplen, = R(s, m(s), 8;1) + ”)/V/?(S;z,) > & 7

1
Vi 1(8) - > sample;
()

Temporal Difference Learning

= Bigidea: learn from every experience!
= Update V(s) each time we experience a transition (s, a, s’, r)
= Likely outcomes s’ will contribute updates more often

* Temporal difference learning of values
= Policy still fixed, still doing evaluation!
= Move values toward value of whatever successor occurs: running average

Sample of V(s): sample = R(s,m(s),s) +~4V™(s")
Update to V(s): VT(s) + (1 —a)V"(s) + (a)sample

Same update: V7T (s) « V™(s) + a(sample — V7 (s))

Exponential Moving Average

= Exponential moving average
* The running interpolation update: x,, = (1 — Cl{) cTpn—1+ Q- Ty

= Makes recent samples more important:

Tp+(1—a) Tp1+(1—a)? zp_o+...
I1+(1—-a)+(1—-a)2+...

Ly =

= Forgets about the past (distant past values were wrong anyway)

= Decreasing learning rate (alpha) can give converging averages

Example: Temporal Difference Learning

States

5 lclo

Assume:y=1,a=1/2

Observed Transitions

[B, east, C, -2] [C, east, D, -2]

oo o] alo]e] (a3]

VT(s) + (1= a)V7™(s) 4+ o |R(s,7(s),s") + V(s

Problems with TD Value Learning

= TD value leaning is a model-free way to do policy evaluation, mimicking
Bellman updates with running sample averages

= However, if we want to turn values into a (new) policy, we’re sunk:
w(s) = argmax Q(s,a)
a

Q(s,a) = ZT(S, a,s) {R(s, a,s’) + ny(s’)}

= |dea: learn Q-values, not values

= Makes action selection model-free too!

Active Reinforcement Learning

Active Reinforcement Learning

= Full reinforcement learning: optimal policies (like value iteration)
= You don’t know the transitions T(s,a,s’)
= You don’t know the rewards R(s,a,s’)
" You choose the actions now
= Goal: learn the optimal policy / values

" |n this case:
= Learner makes choices!
» Fundamental tradeoff: exploration vs. exploitation

= This is NOT offline planning! You actually take actions in the world and
find out what happens...

Detour: Q-Value Iteration

Value iteration: find successive (depth-limited) values
= Start with V,(s) = 0, which we know is right
= GivenV,, calculate the depth k+1 values for all states:

Vi1(8) < m(?XZT(s, a,s) {R(s,a, s + ”ka(s’)}

Can we write out a bellman equation like vaiue iteration, but only using Q values?

Detour: Q-Value Iteration

= Value iteration: find successive (depth-limited) values
= Start with V,(s) = 0, which we know is right
= GivenV,, calculate the depth k+1 values for all states:

Vi1(8) < m(?XZT(S, a,s) {R(s,a, s + ”ka(s’)}

= But Q-values are more useful, so compute them instead
= Start with Qg(s,a) = 0, which we know is right
= Given Q,, calculate the depth k+1 g-values for all g-states:

Qt1(s,a) « S T(s,a,8) | R(s,a,8) +7 maxQu(s',a)

Q-Learning

" Q-Learning: sample-based Q-value iteration

Qt1(s,a) « S T(s,a,8) | R(s,a,8) +7 maxQu(s',a')

" Learn Q(s,a) values as you go
= Receive a sample (s,a,s’,r)
= Consider your old estimate: Q(s,a)
= Consider your new sample estimate:

sample = R(s,a,s’) +~ max Q(s', a")

a

" |ncorporate the new estimate into a running average:

Q(s,a) — (1 —a)Q(s,a) + (@) [sample]

Q-VALUES AFTER 1000 EPISODES

[Demo: Q-learning — gridworld (L10D2)]
[Demo: Q-learning — crawler (L10D3)]

Example

1
sample = R(s,&,s’)+7mel1xQ(s’,a’) a=§,y=1.
a Experience: (D,exit, terminal, +1), (C,->,D,0)

Q(s,a) — (1 —)Q(s,a) + () [sample]

Q-Learning Properties

" Amazing result: Q-learning converges to optimal policy -- even
if you’re acting suboptimally!

= This is called off-policy learning

=

= Caveats:
= You have to explore enough

" You have to eventually make the learning rate
small enough

= .. but not decrease it too quickly
= Basically, in the limit, it doesn’t matter how you select actions (!)

Model-Free Learning

* Model-free (temporal difference) learning

= Experience world through episodes

(8, a,r, S’, a/, ?“’, 8”, a//’ ,r,//’ g)

» Update estimates each transition (8, a, T, 8’)

= Over time, updates will mimic Bellman updates

Q-Learning Recap

= We'd like to do Q-value updates to each Q-state:
Qt1(s,a) « S T(s,a,8) |R(s,a,8) +7 maxQu(s',a')
/ a

S
= But can’t compute this update without knowing T, R

» |nstead, compute average as we go
= Receive a sample transition (s,a,r,s’)
= This sample suggests Q(s,a) ~ 7+ ~ max Q(s', d)
a

= But we want to average over results from (s,a) (Why?)
= So keep a running average

Useful alternate form of

/!
Q(87 (l) N (l o Q)Q(Sa (J,) _I_ (CE) r _I_ Y ma?x Q(S y 4) update for Q-learning.
We want to push the Q-

Q(S; (l) « Q(S; Cl) + CZ(T' +)/HZLE}XQ (S,; a,) — Q(S; Cl)) value towards the sample!

Exploration vs. Exploitation

How to Explore?

= Several schemes for forcing exploration

» Simplest: random actions (e-greedy)
= Every time step, flip a coin
= With (small) probability €, act randomly
= With (large) probability 1-g, act on current policy

= Problems with random actions?

" You do eventually explore the space, but keep
thrashing around once learning is done

= One solution: lower ¢ over time
= Another solution: exploration functions

[Demo: Q-learning — manual exploration — bridge grid (L11D2)]
[Demo: Q-learning — epsilon-greedy -- crawler (L11D3)]

Exploration Functions

= When to explore?
= Random actions: explore a fixed amount

= Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

= Exploration function

= Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g. f(u,n) = u + k/n

Regular Q-Update: Q(s,a) <a R(s,a,5") +ymaxQ(s,a’)
Modified Q-Update: Q(s,a) <« R(s,a,s’) +~ max f(Q(s,d), N(s,ad))

= Note: this propagates the “bonus” back to states that lead to unknown states as well!

[Demo: exploration — Q-learning — crawler — exploration function (L11D4)]

Approximate Q-Learning

Generalizing Across States

Basic Q-Learning keeps a table of all g-values

In realistic situations, we cannot possibly learn
about every single state!

®" Too many states to visit them all in training

®= Too many states to hold the g-tables in memory

Instead, we want to generalize:

= Learn about some small number of training states from
experience
= Generalize that experience to new, similar situations

= This is a fundamental idea in machine learning, and we’ll
see it over and over again

[demo — RL pacman]

Example: Pacman

Let’s say we discover In naive g-learning, Or even this one!
through experience we know nothing
that this state is bad: about this state:

Feature-Based Representations

= Solution: describe a state using a vector of
features (properties)
= Features are functions from states to real numbers
(often 0/1) that capture important properties of the
state
= Example features:
= Distance to closest ghost
= Distance to closest dot
= Number of ghosts
= 1/ (dist to dot)?
= |s Pacman in a tunnel? (0/1)

= |s it the exact state on this slide?

= Can also describe a g-state (s, a) with features (e.g.
action moves closer to food)

Linear Value Functions

Using a feature representation, we can write a q function (or value function) for any
state using a few weights:

V(s) =wi1f1(s) +wafo(s) + ...+ wnfn(s)
Q(s,a) = wyf1(s,a)Fwafa(s,a)+...+wnfn(s,a)
Advantage: our experience is summed up in a few powerful numbers

Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

Qs,0) = wifi(s,@)Fwafa(s, @)+ Awnfa(sa)

" Q-learning with linear Q-functions:

transition = (s,a,r,s’)
o Q(S,Ob)
Q(s,a) — Q(s,a) + o [difference] Exact Q's

difference = [7" + v max Q(s',a")
a

w; +— w; + « [difference] f;(s,a) Approximate Q’s

= |ntuitive interpretation:
= Adjust weights of active features

= E.g., if something unexpectedly bad happens, blame the features that were on:
disprefer all states with that state’s features

" Formal justification: online least squares

Q-Learning and Least Squares

407

Linear Approximation: Regression

20

f1(x)

Prediction:
g = wg + wi f1(x)

Prediction:

y; = wo + wiy f1(x) + wafo(x)

Optimization: Least Squares

1

2
total error = Z (y; — 3)}-)2 =) (yf,; — Zwkfk(l'i))
; k
(/

. Error or “residual’
Observation Y

Prediction g

O f1(x) -

Minimizing Error

Imagine we had only one point x, with features f(x), target value y, and weights w:

2
error(w) = 5 (y - Zwkfm))
k

0 error(w)

OWm,

- (y - Zwkfk(ﬂf)) Jm(x)
k

Wm < Wm + (y - Zwkfk(w)) fm(z)
k
Approximate q update explained:

Wi — w4 |1+ yMaxQ(s',a') — Q(s, a) | fm(s,a)

“target” “prediction”

Tabular Q-Learning is Special Case

Wi — win 4 @ |7+ yMaxQ(s',d') — Q(s,)| fm(s, a)

“target” “prediction”

Qs,0) — (1 -)Q(5,0) + (o) |r + 7 MaxQ(s',a)

Q(s,@) < Q(s,@) +alr +ymaxQ(s',a") = Q(s,)]

If feature Is just an indicator for (s,a), then we recover
the original tabular setting.

Non-linear function approximation

V(s) = w1 f1(s) +wafo(s) + ...+ wnfn(s)
Q(s,a) = w1 f1(s,a)twafa(s,a)+...+wnfn(s,a)

V.S.

V(s) = fo(s)

Deep Learning!

Q(s,a) = fo(s,a)

Element of Neural Network

Neuron f:R¥X - R

Z=aw, +a,Ww, +-+a, w, +b

a2 _
F— O'(Z) . a
a ‘ Activation
K weights Z) function

Neural Network

Input Layer 1 Layer 2 Layer L Output
X, o e . —)
<O > A

2 " | Y —
\ 4 @ Y2
nwe— L3 .. L —y
Input = v — Output
Layer Hidden Layers Layer

Deep means many hidden layers

Example of Neural Network

~N

Sigmoid Function 0'(2)1 _
1 05
O-(Z) lte”

_ o =,

Example of Neural Network

. 0.98 > " 0.86 3 . 0.62
Ilr-f— | Ilrf
0 -2
, 0.12 ' 0.11 ; 0.83
1z — 3 e
0 2

Changing the parameters (weights) changes

the function!

Neural Networks: Non-linear function approximation

hidden layer 1 hidden layer 2 hidden layer 3

input layer

ue Action 1

States—> ue Action 2

ue Action 3

ue Action 4

Differences between RL and Supervised Learning

Predicting State-Action Value Predicting House Price

Input: size, #bedrooms,

Input: (s,a) nearby school ratings, year
built, etc.

Output: Qg (s, a) Output: fg(x)

Target: 7 + ymaxQy (s',a’) Target: $680K

RL has a non-stationary target! This leads to
Instabilities If using non-linear function approximation.

How to get Q-Learning to work with Deep Learning?

" Experience Replay Buffer
" Don’t throw away each transition (s,a,r,s’)
= Save them in a buffer or “replay memory”
" During training randomly sample a batch of transitions to update Q

How to get Q-Learning to work with Deep Learning?

= Target Network
= Keep the network for the target fixed and only update periodically

Like before we want to update Q to minimize the error:

" 2
error = — (r + ymaxQr(s’,a’;07) — Q(s, a; 9))
2 a’

Vgerror = — (r +ymaxQr(s',a’;07) — Q(s, a; 8)) Vo0(s,a;0)
a

Take step to decrease error (in the direction of the negative gradient)

0 < 0 Of(’r'+")/ mz}XQT(Slv a';H_)—Q(s,a; 9))V9Q(87 a, 9)

0 « 0+a(r+ymaxQr(s’,a’;07)—Q(s,a;0)) VoQ(s, a; 0)

hidden layer 1 hidden layer 2 hidden layer 3

input layer

Q Network

States—»

Updates 6~ every C timesteps

Ta rget | hidden layer 1 hidden layer 2 hidden layer 3
input layer
Network

States—>

High-Level Overview of DQN

0 6-+a(r+ymax Qr(s',a';07)—Q(s, a;0)) VoQ(s, a; 0)

DQN Loss Calculation

Environment Gradient loss Predicted Q Target Q
a
Environment [Ll » Target
. Prediction Network
S 'y 'y r
(s, a)
- - - ™
~ - ~_—|(s’= Next State)
» Replay Memory
(S ar S’) state (s,), action (a,), new state

(S.41), reward (7;), and done
_ willbe stored -~

Deep RL Makes a Big Splash!

nature

Explore content v About the journal v Publish with us v Subscribe

nature > letters > article

Published: 25 February 2015

Human-level control through deep reinforcement
learning

Volodymyr Mnih, Koray Kavukcuoglu &, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare,

Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig_Petersen, Charles Beattie, Amir

Sadik, loannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg & Demis Hassabis

LA » N~ ervvuullvsv

Google Acquires Artificial

Intelligence Startup DeepMind For
More Than $500M . .

Catherine Shu @catherineshu / 6:20 PM MST « January 26, 2014 ! Comment

oearcn Q

Regi

~~AO T i~k
eCrnuluncri+

Venture

DEEPMIND

YouTube T

The Arcade Learning Environment

ooDo s

A i OUUDoDOg L 1L DoDovoo b

How do you learn from raw pixels?

" Too many parameters to have a weight for each pixel.
= Use a convolutional filter

13
Source pixel ~— |0 P
54 — 0
M —1 3 [
3 4 L1 ((1x3)+(0x0)+(1x1)+
—T6 | -{ 6 | (-2x2)+(0x6)+(2x2) +
P S an (1x2)+(0x4)+(1x1) =-3
2 5 -
apiar |
o=l == 6 } // ///
2 }./ 0 // =
2 41L-1 // =
2 == : // //
Convolution filter L // ==
[
(Sobel Gx) = /_/ //
Destination pixel L = L1
et i //
L
// //
.//
|~

How do you learn from raw pixels?

" Too many parameters to have a weight for each pixel.
= Use a convolutional filter
= Use several layers of multiple filters

C3: f. maps 16@10x10

INPUT % ;g:gge maps S4: f. maps 16@5x5

32x32 S2: f. maps C5: layer
6@14x14 I r 120 FS layer quPUT
' Full oomlection I Gaussaan connections
Convolutions Subsampling Convolutnons Subsamphng Full connection

LeCun, Yann, et al. "Gradient-based learning applied to document recognition.” 1998.

High-Level Architecture

" Lea rns to Hsee” Convglution Convglution Fullycgnnected
through trial and
error!

'n
=
<
8
5
5
@
Q
®
Q

—

ST T
: NUHGAMNE -
@) 5

i

D S

= |earns what actions /
to take to maximize N/
game score.

O

-
-~
%'-/'-'-':'_’.'-"-'""-
e 8 8 8 8 & & & 9 0

e N

=,
N
+
O

N

A1t L '
+ B+ + i+ 0+
@) (@ @] (@] (@]

" Epsilon-greedy
exploration.

",

i

£

¥+

* & l'l LA I S e e e L 'l",:. e & l. e @
o

PN /NN dédonhh dddootn ddddosb
o A .
= = o =, o —
o ' /// L \\\ Te—
® 0000 0cecerees e
. A

Video Pinball |

Boxing |

Breakout |

Star Gunner |

Robotank |

Atlantis |

Crazy Climber i

Gopher |

Demon Attack |

Name This Game |

Krull |

Assault |

Road Runner |

Kangaroo :
James Bond

Tennis |

Pong |

Space Invaders |

Beam Rider |

Tutankham |

Kung-Fu Master |

Freeway |

Time Pilot |

Enduro |

Fishing Derby |

Up and Down |

Ice Hockey |

Q*bert |

H.E.R.O. |

Asterix |

Ms. Pac-Man |
Asteroids |
Frostbite |
Gravitar |
Private Eye :

At

\

human-level or above

k3%
f7%
fe%
3
f2%

Montezuma's Revenge

| 0%

nmn;nmlnmNW

Below human-level

Best linear learner

c—

100 200

4,500%

Lots of Advanced Exploration Strategies

Unifying Count-Based Exploration and Intrinsic Motivation
INCENTIVIZING EXPLORATION IN REINFORCEMENT

LEARNING WITH DEEP PREDICTIVE MODELS

Marc G. Bellemare Sriram Srinivasan Georg Ostrovski . . .
bellemare @ google.com srsrinivasan @ google.com ostrovski@ google.com Bradly C. Stadie Sergey Levine Pieter Abbeel
Department of Statistics EECS Department
University of California, Berkeley University of California, Berkeley
Tom Schaul David Saxton Rémi Munos Berkeley, CA 94720 Berkeley, CA 94720
schaul @ google.com saxton@google.com munos @ google.com bstadielberkeley.edu {svlevine, pabbeel}@cs.berkeley.edu

Google DeepMind
London, United Kingdom

EXPLORATION BY RANDOM NETWORK DISTILLATION

Yuri Burda® Harrison Edwards* Amos Storkey Oleg Klimov
OpenAl OpenAl Univ. of Edinburgh OpenAl

Great blog article: https://lilianweng.github.io/posts/2020-06-07-exploration-drl/

Exploration by Random Network Distillation

Random Network Distillation

ENVIRONMENT FEATURES
> 0jf] ———— f,i+1

a; i = |fi+1— fit1
kL POLICY PREDICTOR A
0; -

|2

fit1

PREDICTOR PREDICTOR

PARAMETERS ¢ OPTIMIZER - jﬁ "‘j%

010171)
POLICY POLICY <

PARAMETERS < OPTIMIZER e
Ot Q¢ T'¢

DQN only works for discrete action spaces

= Next Time: How to deal with continuous action spaces

+ - “a r
e NG AMNE
)

AIMIRL<Ce Iy
+1+1+0+0+01+ 0+
0] (@] (@] (] [®] (o] (¢

	Slide 1: Intro to Value-Based Reinforcement Learning
	Slide 2: What changes?
	Slide 3: Example: Learning to Walk
	Slide 4: Example: Learning to Walk
	Slide 5: Example: Learning to Walk
	Slide 6: Example: Learning to Walk
	Slide 7: https://vision-locomotion.github.io/
	Slide 8
	Slide 9: The Arcade Learning Environment
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Reinforcement Learning
	Slide 14: Why Reinforcement Learning?
	Slide 15: Reinforcement Learning
	Slide 16: Offline (MDPs) vs. Online (RL)
	Slide 17: Model-Based Learning
	Slide 18: Simple View of Model-Based RL
	Slide 19: Sometimes Model of World is Known
	Slide 20: Deep RL Makes a Big Splash!
	Slide 21: When might RL be a good tool for your problem?
	Slide 22: When might RL be a good tool for your problem?
	Slide 23: When might RL not be a good tool?
	Slide 24: When might RL not be a good tool?
	Slide 25: Model-Free Learning
	Slide 26: Passive Reinforcement Learning
	Slide 27: Passive Reinforcement Learning
	Slide 28: Direct Evaluation (Monte Carlo Evaluation)
	Slide 29: Problems with Direct Evaluation
	Slide 30: Why Not Use Policy Evaluation?
	Slide 31: Sample-Based Policy Evaluation?
	Slide 32: Temporal Difference Learning
	Slide 33: Exponential Moving Average
	Slide 34: Example: Temporal Difference Learning
	Slide 35: Problems with TD Value Learning
	Slide 36: Active Reinforcement Learning
	Slide 37: Active Reinforcement Learning
	Slide 38: Detour: Q-Value Iteration
	Slide 39: Detour: Q-Value Iteration
	Slide 40: Q-Learning
	Slide 41: Example
	Slide 42: Q-Learning Properties
	Slide 43: Model-Free Learning
	Slide 44: Q-Learning Recap
	Slide 45: Exploration vs. Exploitation
	Slide 46: How to Explore?
	Slide 47: Exploration Functions
	Slide 48: Approximate Q-Learning
	Slide 49: Generalizing Across States
	Slide 50: Example: Pacman
	Slide 53: Feature-Based Representations
	Slide 54: Linear Value Functions
	Slide 55: Approximate Q-Learning
	Slide 58: Q-Learning and Least Squares
	Slide 59: Linear Approximation: Regression
	Slide 60: Optimization: Least Squares
	Slide 61: Minimizing Error
	Slide 62: Tabular Q-Learning is Special Case
	Slide 63: Non-linear function approximation
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68: Neural Networks: Non-linear function approximation
	Slide 69: Differences between RL and Supervised Learning
	Slide 70: How to get Q-Learning to work with Deep Learning?
	Slide 71: How to get Q-Learning to work with Deep Learning?
	Slide 73
	Slide 74: High-Level Overview of DQN
	Slide 75: Deep RL Makes a Big Splash!
	Slide 76
	Slide 77: The Arcade Learning Environment
	Slide 78: How do you learn from raw pixels?
	Slide 79: How do you learn from raw pixels?
	Slide 80: High-Level Architecture
	Slide 81
	Slide 82
	Slide 83: Lots of Advanced Exploration Strategies
	Slide 84: Exploration by Random Network Distillation
	Slide 93: DQN only works for discrete action spaces

