Intro to Value-Based Reinforcement Learning

[Some content borrowed from slides created by Dan Klein and Pieter Abbeel http://ai.berkeley.edu.]

What changes?

- Rather than planning, we now need to learn!
 - No access to underlying MDP, can't solve it with just computation
 - You needed to actually act to figure it out
 - Extension and generalization of Multi-Armed Bandits
- Important ideas in reinforcement learning that came up
 - Exploration: you have to try unknown actions to get information
 - Exploitation: eventually, you have to use what you know
 - Regret: even if you learn intelligently, you make mistakes
 - Sampling: because of chance, you have to try things repeatedly
 - Difficulty: learning can be much harder than solving a known MDP

Initial

A Learning Trial

After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]

Initial

[Kohl and Stone, ICRA 2004]

Training

[Kohl and Stone, ICRA 2004]

[Video: AIBO WALK – training]

Finished

[Kohl and Stone, ICRA 2004]

[Video: AIBO WALK – finished]

https://vision-locomotion.github.io/

Search Q

TechCrunch+

Startups

Venture

Security

Al

Crypto

Apps

Events

Startup Battlefield

More

Startups

Google Acquires Artificial Intelligence Startup DeepMind For More Than \$500M

Catherine Shu @catherineshu / 6:20 PM MST • January 26, 2014

TechCrunch Early Stage Regi Ad WATCH **ALL SEA** LIVE AND New users only. Valid for

 \times

 \mathbb{X}

f

in

•

Comment

YouTube T'

subscription price after tr

The Arcade Learning Environment

ChatGPT

Reinforcement Learning

- Basic idea:
 - Receive feedback in the form of rewards
 - Agent's utility is defined by the reward function
 - Must (learn to) act so as to maximize expected rewards
 - All learning is based on observed samples of outcomes!

Why Reinforcement Learning?

- Takes inspiration from nature
- Often easier to encode a task as a sparse reward (e.g. recognize if goal is achieved) but hard to hand-code how to act so reward is maximized (e.g. Go)
- General purpose AI framework

Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - A set of states s ∈ S
 - A set of actions (per state) A
 - A model T(s,a,s')
 - A reward function R(s,a,s')
- Still looking for a policy π(s)

- New twist: don't know T or R
 - I.e. we don't know which states are good or what the actions do
 - Must actually try actions and states out to learn

Offline (MDPs) vs. Online (RL)

Offline Solution

Online Learning

Model-Based Learning

Simple View of Model-Based RL

- Model-Based Idea:
 - Learn an approximate model based on experiences
 - Solve for values as if the learned model were correct
- Step 1: Learn empirical MDP model
 - Count outcomes s' for each s, a
 - Normalize to give an estimate of $\widehat{T}(s, a, s')$
 - Discover each $\widehat{R}(s, a, s')$ when we experience (s, a, s')
- Step 2: Solve the learned MDP
 - For example, use value iteration, as before

Sometimes Model of World is Known

Deep RL Makes a Big Splash!

nature Explore content ~ About the journal ∽ Publish with us ~ Subscribe

<u>nature</u> > <u>letters</u> > article

Published: 25 February 2015

Human-level control through deep reinforcement learning

Volodymyr Mnih, Koray Kavukcuoglu ^C, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, <u>Alex Graves</u>, <u>Martin Riedmiller</u>, <u>Andreas K. Fidjeland</u>, <u>Georg Ostrovski</u>, <u>Stig Petersen</u>, <u>Charles Beattie</u>, <u>Amir</u> <u>Sadik</u>, <u>Ioannis Antonoglou</u>, <u>Helen King</u>, <u>Dharshan Kumaran</u>, <u>Daan Wierstra</u>, <u>Shane Legg</u> & <u>Demis Hassabis</u>

When might RL be a good tool for your problem?

When might RL be a good tool for your problem?

- Is your problem a sequential decision making problem?
- Are there "actions" that effect the next "state"?
- Do you know the rules of these effects?
- Can you write down a clear objective/score/reward/cost?
- Do you have a simulator?
- Lots of examples of sequences of decisions and their long-term consequences?
- Is it unclear what to do in each state? Exploration required?
- Are you looking for unique/creative/super-human solutions?

When might RL not be a good tool?

When might RL not be a good tool?

- Single step or static problem
- No clear reward signal.
- Reward signal is unavailable or very hard to write down.
- Well-known model of the environment.
- Deterministic environment
- Low-tolerance for exploration and trial and error
- No need for adaptive or novel solutions. The goal is to perform the task in a very predictable way.

Model-Free Learning

Passive Reinforcement Learning

Passive Reinforcement Learning

Simplified task: policy evaluation

- Input: a fixed policy π(s)
- You don't know the transitions T(s,a,s')
- You don't know the rewards R(s,a,s')
- Goal: learn the state values

In this case:

- Learner is "along for the ride"
- No choice about what actions to take
- Just execute the policy and learn from experience
- This is NOT offline planning! You actually take actions in the world.

Direct Evaluation (Monte Carlo Evaluation)

- Goal: Compute values for each state under π
- Idea: Average together observed sample values
 - Act according to π
 - Every time you visit a state, write down what the sum of discounted rewards turned out to be
 - Average those samples
- This is called direct evaluation

Problems with Direct Evaluation

- What's good about direct evaluation?
 - It's easy to understand
 - It doesn't require any knowledge of T, R
 - It eventually computes the correct average values, using just sample transitions
- What bad about it?
 - It wastes information about state connections
 - Each state must be learned separately
 - So, it takes a long time to learn

Why Not Use Policy Evaluation?

π(s)

- Simplified Bellman updates calculate V for a fixed policy:
 - Each round, replace V with a one-step-look-ahead layer over V

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$
 s, $\pi(s), s'$

- This approach fully exploited the connections between the states
- Unfortunately, we need T and R to do it!
- Key question: how can we do this update to V without knowing T and R?
 - In other words, how to we take a weighted average without knowing the weights?

Sample-Based Policy Evaluation?

We want to improve our estimate of V by computing these averages:

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

Idea: Take samples of outcomes s' (by doing the action!) and average

$$sample_{1} = R(s, \pi(s), s_{1}') + \gamma V_{k}^{\pi}(s_{1}')$$

$$sample_{2} = R(s, \pi(s), s_{2}') + \gamma V_{k}^{\pi}(s_{2}')$$

$$\dots$$

$$sample_{n} = R(s, \pi(s), s_{n}') + \gamma V_{k}^{\pi}(s_{n}')$$

$$V_{k+1}^{\pi}(s) \leftarrow \frac{1}{n} \sum_{i} sample_{i}$$

Temporal Difference Learning

- Big idea: learn from every experience!
 - Update V(s) each time we experience a transition (s, a, s', r)
 - Likely outcomes s' will contribute updates more often
- Temporal difference learning of values
 - Policy still fixed, still doing evaluation!
 - Move values toward value of whatever successor occurs: running average

Sample of V(s): $sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$ Update to V(s): $V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + (\alpha)sample$ Same update: $V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$

Exponential Moving Average

- Exponential moving average
 - The running interpolation update: $ar{x}_n = (1-lpha) \cdot ar{x}_{n-1} + lpha \cdot x_n$
 - Makes recent samples more important:

$$\bar{x}_n = \frac{x_n + (1 - \alpha) \cdot x_{n-1} + (1 - \alpha)^2 \cdot x_{n-2} + \dots}{1 + (1 - \alpha) + (1 - \alpha)^2 + \dots}$$

- Forgets about the past (distant past values were wrong anyway)
- Decreasing learning rate (alpha) can give converging averages

Example: Temporal Difference Learning

 $V^{\pi}(s) \leftarrow (1-\alpha)V^{\pi}(s) + \alpha \left[R(s,\pi(s),s') + \gamma V^{\pi}(s') \right]$

Problems with TD Value Learning

- TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages
- However, if we want to turn values into a (new) policy, we're sunk:

 $\pi(s) = \arg\max_{a} Q(s, a)$ $Q(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V(s') \right]$

- Idea: learn Q-values, not values
- Makes action selection model-free too!

Active Reinforcement Learning

Active Reinforcement Learning

- Full reinforcement learning: optimal policies (like value iteration)
 - You don't know the transitions T(s,a,s')
 - You don't know the rewards R(s,a,s')
 - You choose the actions now
 - Goal: learn the optimal policy / values

In this case:

- Learner makes choices!
- Fundamental tradeoff: exploration vs. exploitation
- This is NOT offline planning! You actually take actions in the world and find out what happens...

Detour: Q-Value Iteration

- Value iteration: find successive (depth-limited) values
 - Start with V₀(s) = 0, which we know is right
 - Given V_k, calculate the depth k+1 values for all states:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

• Can we write out a bellman equation like value iteration, but only using Q values?

Detour: Q-Value Iteration

- Value iteration: find successive (depth-limited) values
 - Start with V₀(s) = 0, which we know is right
 - Given V_k, calculate the depth k+1 values for all states:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- But Q-values are more useful, so compute them instead
 - Start with Q₀(s,a) = 0, which we know is right
 - Given Q_k, calculate the depth k+1 q-values for all q-states:

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

Q-Learning

Q-Learning: sample-based Q-value iteration

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

- Learn Q(s,a) values as you go
 - Receive a sample (s,a,s',r)
 - Consider your old estimate: Q(s, a)
 - Consider your new sample estimate:

 $sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$

Incorporate the new estimate into a running average:

 $Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) [sample]$

[Demo: Q-learning – gridworld (L10D2)] [Demo: Q-learning – crawler (L10D3)]

Example

 $sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$ $Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha) [sample]$

 $\alpha = \frac{1}{2}, \gamma = 1.$ Experience: (D,exit, terminal, +1), (C,->,D,0)

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy -- even if you're acting suboptimally!
- This is called off-policy learning
- Caveats:
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - ... but not decrease it too quickly
 - Basically, in the limit, it doesn't matter how you select actions (!)

Model-Free Learning

- Model-free (temporal difference) learning
 - Experience world through episodes

 $(s, a, r, s', a', r', s'', a'', r'', s'''' \dots)$

- Update estimates each transition (s, a, r, s')
- Over time, updates will mimic Bellman updates

Q-Learning Recap

We'd like to do Q-value updates to each Q-state:

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

- But can't compute this update without knowing T, R
- Instead, compute average as we go
 - Receive a sample transition (s,a,r,s')
 - This sample suggests $Q(s,a) \approx r + \gamma \max_{a'} Q(s',a')$
 - But we want to average over results from (s,a) (Why?)
 - So keep a running average

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) \left[r + \gamma \max_{a'} Q(s',a') \right]$$
$$Q(s,a) \leftarrow Q(s,a) + \alpha(r + \gamma \max_{a'} Q(s',a') - Q(s,a))$$

Useful alternate form of update for Q-learning. We want to push the Qvalue towards the sample!

Exploration vs. Exploitation

How to Explore?

- Several schemes for forcing exploration
 - Simplest: random actions (ε-greedy)
 - Every time step, flip a coin
 - With (small) probability ε, act randomly
 - With (large) probability 1- ε , act on current policy
 - Problems with random actions?
 - You do eventually explore the space, but keep thrashing around once learning is done
 - $\hfill\blacksquare$ One solution: lower ϵ over time
 - Another solution: exploration functions

[Demo: Q-learning – manual exploration – bridge grid (L11D2)] [Demo: Q-learning – epsilon-greedy -- crawler (L11D3)]

Exploration Functions

- When to explore?
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established, eventually stop exploring
- Exploration function
 - Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g. f(u, n) = u + k/n

Regular Q-Update: $Q(s,a) \leftarrow_{\alpha} R(s,a,s') + \gamma \max_{a'} Q(s',a')$

Modified Q-Update: $Q(s,a) \leftarrow_{\alpha} R(s,a,s') + \gamma \max_{a'} f(Q(s',a'), N(s',a'))$

Note: this propagates the "bonus" back to states that lead to unknown states as well!

[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]

Approximate Q-Learning

Generalizing Across States

- Basic Q-Learning keeps a table of all q-values
- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the q-tables in memory
- Instead, we want to generalize:
 - Learn about some small number of training states from experience
 - Generalize that experience to new, similar situations
 - This is a fundamental idea in machine learning, and we'll see it over and over again

[demo – RL pacman]

Example: Pacman

Let's say we discover through experience that this state is bad:

In naïve q-learning, we know nothing about this state:

Or even this one!

Feature-Based Representations

- Solution: describe a state using a vector of features (properties)
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - 1 / (dist to dot)²
 - Is Pacman in a tunnel? (0/1)
 - etc.
 - Is it the exact state on this slide?
 - Can also describe a q-state (s, a) with features (e.g. action moves closer to food)

Linear Value Functions

 Using a feature representation, we can write a q function (or value function) for any state using a few weights:

$$V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s)$$

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \ldots + w_n f_n(s,a)$$

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \ldots + w_n f_n(s,a)$$

Q-learning with linear Q-functions:

transition =
$$(s, a, r, s')$$

difference = $\left[r + \gamma \max_{a'} Q(s', a')\right] - Q(s, a)$
 $Q(s, a) \leftarrow Q(s, a) + \alpha$ [difference] Exact
 $w_i \leftarrow w_i + \alpha$ [difference] $f_i(s, a)$ Approx

Approximate Q's

- Intuitive interpretation:
 - Adjust weights of active features
 - E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state's features
- Formal justification: online least squares

Q-Learning and Least Squares

Linear Approximation: Regression

Prediction: $\hat{y} = w_0 + w_1 f_1(x)$

Prediction: $\hat{y}_i = w_0 + w_1 f_1(x) + w_2 f_2(x)$

Optimization: Least Squares

Minimizing Error

Imagine we had only one point x, with features f(x), target value y, and weights w:

$$\operatorname{error}(w) = \frac{1}{2} \left(y - \sum_{k} w_{k} f_{k}(x) \right)^{2}$$

$$\frac{\partial \operatorname{error}(w)}{\partial w_{m}} = - \left(y - \sum_{k} w_{k} f_{k}(x) \right) f_{m}(x)$$

$$w_{m} \leftarrow w_{m} + \alpha \left(y - \sum_{k} w_{k} f_{k}(x) \right) f_{m}(x)$$

Approximate q update explained:

$$w_m \leftarrow w_m + \alpha \left[r + \gamma \max_a Q(s', a') - Q(s, a) \right] f_m(s, a)$$

"target" "prediction"

Tabular Q-Learning is Special Case

$$w_m \leftarrow w_m + \alpha \left[r + \gamma \max_a Q(s', a') - Q(s, a) \right] f_m(s, a)$$

"target" "prediction"
$$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha) \left[r + \gamma \max_{a'} Q(s', a') \right]$$

$$Q(s,a) \leftarrow Q(s,a) + \alpha [r + \gamma \max_{a'} Q(s',a') - Q(s,a)]$$

If feature is just an indicator for (s,a), then we recover the original tabular setting.

Non-linear function approximation

Q

$$V(s) = w_1 f_1(s) + w_2 f_2(s) + \dots + w_n f_n(s)$$

(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \dots + w_n f_n(s, a)
v.s.
$$V(s) = f_{\theta}(s)$$

Deep Learning!
$$Q(s, a) = f_{\theta}(s, a)$$

Element of Neural Network

Neuron $f: \mathbb{R}^K \to \mathbb{R}$

Deep means many hidden layers

Example of Neural Network

Example of Neural Network

Changing the parameters (weights) changes the function!

Neural Networks: Non-linear function approximation

Differences between RL and Supervised Learning

Predicting State-Action Value

Input: (s,a)

Output: $Q_{\theta}(s, a)$ Target: $r + \gamma \max_{a'} Q_{\theta}(s', a')$ Input: size, #bedrooms, nearby school ratings, year built, etc. Output: $f_{\theta}(x)$ Target: \$680*K*

Predicting House Price

RL has a non-stationary target! This leads to instabilities if using non-linear function approximation.

How to get Q-Learning to work with Deep Learning?

- Experience Replay Buffer
 - Don't throw away each transition (s,a,r,s')
 - Save them in a buffer or "replay memory"
 - During training randomly sample a batch of transitions to update Q

How to get Q-Learning to work with Deep Learning?

Target Network

Keep the network for the target fixed and only update periodically

Like before we want to update Q to minimize the error:

$$error = \frac{1}{2} \left(r + \gamma \max_{a'} Q_T(s', a'; \theta^-) - Q(s, a; \theta) \right)^2$$

$$\nabla_{\theta} error = -\left(r + \gamma \max_{a'} Q_T(s', a'; \theta^-) - Q(s, a; \theta)\right) \nabla_{\theta} Q(s, a; \theta)$$

Take step to decrease error (in the direction of the negative gradient)

$$\theta \leftarrow \theta + \alpha \big(r + \gamma \max_{a'} Q_T(s', a'; \theta^-) - Q(s, a; \theta) \big) \nabla_{\theta} Q(s, a; \theta)$$

$$\theta \leftarrow \theta + \alpha \big(r + \gamma \max_{a'} Q_T(s', a'; \theta^-) - Q(s, a; \theta) \big) \nabla_{\theta} Q(s, a; \theta)$$

High-Level Overview of DQN

Deep RL Makes a Big Splash!

nature Explore content ~ About the journal ∽ Publish with us ~ Subscribe

<u>nature</u> > <u>letters</u> > article

Published: 25 February 2015

Human-level control through deep reinforcement learning

Volodymyr Mnih, Koray Kavukcuoglu ^C, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, <u>Alex Graves</u>, <u>Martin Riedmiller</u>, <u>Andreas K. Fidjeland</u>, <u>Georg Ostrovski</u>, <u>Stig Petersen</u>, <u>Charles Beattie</u>, <u>Amir</u> <u>Sadik</u>, <u>Ioannis Antonoglou</u>, <u>Helen King</u>, <u>Dharshan Kumaran</u>, <u>Daan Wierstra</u>, <u>Shane Legg</u> & <u>Demis Hassabis</u> Search Q

TechCrunch+

Startups

Venture

Security

Al

Crypto

Apps

Events

Startup Battlefield

More

Startups

Google Acquires Artificial Intelligence Startup DeepMind For More Than \$500M

Catherine Shu @catherineshu / 6:20 PM MST • January 26, 2014

YouTube T

Comment

The Arcade Learning Environment

How do you learn from raw pixels?

- Too many parameters to have a weight for each pixel.
- Use a convolutional filter

How do you learn from raw pixels?

- Too many parameters to have a weight for each pixel.
- Use a convolutional filter
- Use several layers of multiple filters

LeCun, Yann, et al. "Gradient-based learning applied to document recognition." 1998.

High-Level Architecture

- Learns to "see" through trial and error!
- Learns what actions to take to maximize game score.
- Epsilon-greedy exploration.

Lots of Advanced Exploration Strategies

Unifying Count-Based Exploration and Intrinsic Motivation

Marc G. Bellemare bellemare@google.com Sriram Srinivasan srsrinivasan@google.com Georg Ostrovski ostrovski@google.com

Tom Schaul schaul@google.com David Saxton saxton@google.com

Google DeepMind London, United Kingdom Rémi Munos munos@google.com INCENTIVIZING EXPLORATION IN REINFORCEMENT LEARNING WITH DEEP PREDICTIVE MODELS

Bradly C. Stadie Department of Statistics University of California, Berkeley Berkeley, CA 94720 bstadie@berkeley.edu Sergey Levine Pieter Abbeel EECS Department University of California, Berkeley Berkeley, CA 94720 {svlevine, pabbeel}@cs.berkeley.edu

EXPLORATION BY RANDOM NETWORK DISTILLATION

Yuri Burda* OpenAI Harrison Edwards* OpenAI Amos Storkey Univ. of Edinburgh Oleg Klimov OpenAI

Great blog article: https://lilianweng.github.io/posts/2020-06-07-exploration-drl/

Exploration by Random Network Distillation

DQN only works for discrete action spaces

Next Time: How to deal with continuous action spaces

