Intro to Value-Based Reinforcement Learning

Instructor: Daniel Brown

University of Utah

[Some content borrowed from slides created by Dan Klein and Pieter Abbeel http://ai.berkeley.edu.]



What changes?

= Rather than planning, we now need to learn!
= No access to underlying MDP, can’t solve it with just computation
" You needed to actually act to figure it out
= Extension and generalization of Multi-Armed Bandits

" |[mportant ideas in reinforcement learning that came up
= Exploration: you have to try unknown actions to get information
= Exploitation: eventually, you have to use what you know
= Regret: even if you learn intelligently, you make mistakes
= Sampling: because of chance, you have to try things repeatedly
= Difficulty: learning can be much harder than solving a known MDP



Example: Learning to Walk

Initial A Learning Trial After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]



Example: Learning to Walk

Initial
[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — initial]



Example: Learning to Walk

Training
[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — training]



Example: Learning to Walk

-

Finished

[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — finished]



https://vision-locomotion.github.io/
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The Arcade Learning Environment
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Reinforcement Learning

\

Agent \

State: s .
Reward: r Actions: a
\Environment
= Basic idea:

= Receive feedback in the form of rewards

= Agent’s utility is defined by the reward function

= Must (learn to) act so as to maximize expected rewards
= All learning is based on observed samples of outcomes!



Why Reinforcement Learning?

" Takes inspiration from nature

= Often easier to encode a task as a sparse reward (e.g. recognize if

goal is achieved) but hard to hand-code how to act so reward is
maximized (e.g. Go)

" General purpose Al framework



Reinforcement Learning

= Still assume a Markov decision process (MDP):
= Asetofstatess e S
= A set of actions (per state) A
= A model T(s,a,s’) State:
= A reward function R(s,a,s’) Reward: r

= Still looking for a policy m(s)

= New twist: don’t know T or R

>/Agent\ \

~

Environment

(&

= |.e. we don’t know which states are good or what the actions do

= Must actually try actions and states out to learn

Actions: a



Offline (MDPs) vs. Online (RL)

-

J
$
a

Offline Solution Online Learning




Model-Based Learning




Simple View of Model-Based RL

= Model-Based Idea:

= Learn an approximate model based on experiences
= Solve for values as if the learned model were correct

= Step 1: Learn empirical MDP model
= Count outcomes s’ for each s, a
= Normalize to give an estimate of T'(s, a, s')
= Discover each R(s,a,s’) when we experience (s, a, s’)

= Step 2: Solve the learned MDP

= For example, use value iteration, as before




Sometimes Model of World is Known
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Deep RL Makes a Big Splash!

nature

Explore content v  About the journal v  Publish with us v Subscribe

nature > letters > article

Published: 25 February 2015

Human-level control through deep reinforcement
learning

Volodymyr Mnih, Koray Kavukcuoglu &, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare,

Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig_Petersen, Charles Beattie, Amir

Sadik, loannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg & Demis Hassabis



When might RL be a good tool for your problem?



When might RL be a good tool for your problem?

" |s your problem a sequential decision making problem?

" Are there “actions” that effect the next “state”?

" Do you know the rules of these effects?

= Can you write down a clear objective/score/reward/cost?
" Do you have a simulator?

" | ots of examples of sequences of decisions and their long-term
consequences?

" |s it unclear what to do in each state? Exploration required?
= Are you looking for unique/creative/super-human solutions?



When might RL not be a good tool?



When might RL not be a good tool?

Single step or static problem

No clear reward signal.

Reward signal is unavailable or very hard to write down.
Well-known model of the environment.

Deterministic environment

Low-tolerance for exploration and trial and error

No need for adaptive or novel solutions. The goal is to perform
the task in a very predictable way.



Model-Free Learning




Passive Reinforcement Learning




Passive Reinforcement Learning

= Simplified task: policy evaluation
= |nput: a fixed policy m(s)
= You don’t know the transitions T(s,a,s’)
= You don’t know the rewards R(s,a,s’)
" Goal: learn the state values

" |n this case:
= Learner is “along for the ride”
= No choice about what actions to take
= Just execute the policy and learn from experience
= This is NOT offline planning! You actually take actions in the world.




Direct Evaluation (Monte Carlo Evaluation)

= Goal: Compute values for each state under &t

" |dea: Average together observed sample values

= Act accordingtom

= Every time you visit a state, write down what the
sum of discounted rewards turned out to be

= Average those samples

= This is called direct evaluation



Problems with Direct Evaluation

= What’s good about direct evaluation?
" |t's easy to understand
" |t doesn’t require any knowledge of T, R

" |t eventually computes the correct average values,
using just sample transitions

= \What bad about it?

® |t wastes information about state connections

= Each state must be learned separately
= So, it takes a long time to learn



Why Not Use Policy Evaluation?

= Simplified Bellman updates calculate V for a fixed policy:

* Each round, replace V with a one-step-look-ahead layer over V m(s)

Vo (s) =0 [ 7(s)

Vig1(8) < ZT(S, 7(s),s)[R(s,m(s),s") + V(5] X,S;"i/t/ks),s’

= This approach fully exploited the connections between the states
= Unfortunately, we need T and R to do it!

= Key question: how can we do this update to V without knowing T and R?
" |n other words, how to we take a weighted average without knowing the weights?



Sample-Based Policy Evaluation?

= \We want to improve our estimate of V by computing these averages:

Vkﬂ—|—1(3) — ZT(S,W(S), SHR(s,7(s),s’) + ’YV];T(S/)]

S
" |dea: Take samples of outcomes s’ (by doing the action!) and average

sample; = R(s,m(s),s7) + ’)/V]Z(Sll)
samples = R(s,m(s),s5) + YV (s5) ’( i; \
samplen, = R(s, m(s), 8;1) + ”)/V/?(S;z,) > & 7

1
Vi 1(8) - > sample;
()




Temporal Difference Learning

= Bigidea: learn from every experience!
= Update V(s) each time we experience a transition (s, a, s’, r)
= Likely outcomes s’ will contribute updates more often

* Temporal difference learning of values
= Policy still fixed, still doing evaluation!
= Move values toward value of whatever successor occurs: running average

Sample of V(s): sample = R(s,m(s),s) +~4V™(s")
Update to V(s): VT(s) + (1 —a)V"(s) + (a)sample

Same update: V7T (s) « V™(s) + a(sample — V7 (s))




Exponential Moving Average

= Exponential moving average
* The running interpolation update: x,, = (1 — Cl{) cTpn—1+ Q- Ty

= Makes recent samples more important:

Tp+(1—a) Tp1+(1—a)? zp_o+...
I1+(1—-a)+(1—-a)2+...

Ly =

= Forgets about the past (distant past values were wrong anyway)

= Decreasing learning rate (alpha) can give converging averages



Example: Temporal Difference Learning

States

5 lclo

Assume:y=1,a=1/2

Observed Transitions

[ B, east, C, -2 ] [ C, east, D, -2 ]

oo o] alo]e] (a3 ]

VT(s) + (1= a)V7™(s) 4+ o |R(s,7(s),s") + V(s




Problems with TD Value Learning

= TD value leaning is a model-free way to do policy evaluation, mimicking
Bellman updates with running sample averages

= However, if we want to turn values into a (new) policy, we’re sunk:
w(s) = argmax Q(s,a)
a

Q(s,a) = ZT(S, a,s) {R(s, a,s’) + ny(s’)}

= |dea: learn Q-values, not values

= Makes action selection model-free too!



Active Reinforcement Learning




Active Reinforcement Learning

= Full reinforcement learning: optimal policies (like value iteration)
= You don’t know the transitions T(s,a,s’)
= You don’t know the rewards R(s,a,s’)
" You choose the actions now
= Goal: learn the optimal policy / values

" |n this case:
= Learner makes choices!
» Fundamental tradeoff: exploration vs. exploitation

= This is NOT offline planning! You actually take actions in the world and
find out what happens...



Detour: Q-Value Iteration

Value iteration: find successive (depth-limited) values
= Start with V,(s) = 0, which we know is right
= GivenV,, calculate the depth k+1 values for all states:

Vi1(8) < m(?XZT(s, a,s) {R(s,a, s + ”ka(s’)}

Can we write out a bellman equation like vaiue iteration, but only using Q values?



Detour: Q-Value Iteration

= Value iteration: find successive (depth-limited) values
= Start with V,(s) = 0, which we know is right
= GivenV,, calculate the depth k+1 values for all states:

Vi1(8) < m(?XZT(S, a,s) {R(s,a, s + ”ka(s’)}

= But Q-values are more useful, so compute them instead
= Start with Qg(s,a) = 0, which we know is right
= Given Q,, calculate the depth k+1 g-values for all g-states:

Qt1(s,a) « S T(s,a,8) | R(s,a,8) +7 maxQu(s',a)



Q-Learning

" Q-Learning: sample-based Q-value iteration

Qt1(s,a) « S T(s,a,8) | R(s,a,8) +7 maxQu(s',a')

" Learn Q(s,a) values as you go
= Receive a sample (s,a,s’,r)
= Consider your old estimate: Q(s,a)
= Consider your new sample estimate:

sample = R(s,a,s’) +~ max Q(s', a")

a

" |ncorporate the new estimate into a running average:

Q(s,a) — (1 —a)Q(s,a) + (@) [sample]

Q-VALUES AFTER 1000 EPISODES

[Demo: Q-learning — gridworld (L10D2)]
[Demo: Q-learning — crawler (L10D3)]



Example

1
sample = R(s,&,s’)+7mel1xQ(s’,a’) a=§,y=1.
a Experience: (D,exit, terminal, +1), (C,->,D,0)

Q(s,a) — (1 —)Q(s,a) + () [sample]




Q-Learning Properties

" Amazing result: Q-learning converges to optimal policy -- even
if you’re acting suboptimally!

= This is called off-policy learning

=

= Caveats:
= You have to explore enough

" You have to eventually make the learning rate
small enough

= .. but not decrease it too quickly
= Basically, in the limit, it doesn’t matter how you select actions (!)



Model-Free Learning

* Model-free (temporal difference) learning

= Experience world through episodes

(8, a,r, S’, a/, ?“’, 8”, a//’ ,r,//’ g )

» Update estimates each transition (8, a, T, 8’)

= Over time, updates will mimic Bellman updates



Q-Learning Recap

= We'd like to do Q-value updates to each Q-state:
Qt1(s,a) « S T(s,a,8) |R(s,a,8) +7 maxQu(s',a')
/ a

S
= But can’t compute this update without knowing T, R

» |nstead, compute average as we go
= Receive a sample transition (s,a,r,s’)
= This sample suggests Q(s,a) ~ 7+ ~ max Q(s', d)
a

= But we want to average over results from (s,a) (Why?)
= So keep a running average

Useful alternate form of

/!
Q(87 (l) N (l o Q)Q(Sa (J,) _I_ (CE) r _I_ Y ma?x Q(S y 4 ) update for Q-learning.
We want to push the Q-

Q(S; (l) « Q(S; Cl) + CZ(T' + )/HZLE}XQ (S,; a,) — Q(S; Cl)) value towards the sample!



Exploration vs. Exploitation




How to Explore?

= Several schemes for forcing exploration

» Simplest: random actions (e-greedy)
= Every time step, flip a coin
= With (small) probability €, act randomly
= With (large) probability 1-g, act on current policy

= Problems with random actions?

" You do eventually explore the space, but keep
thrashing around once learning is done

= One solution: lower ¢ over time
= Another solution: exploration functions

[Demo: Q-learning — manual exploration — bridge grid (L11D2)]
[Demo: Q-learning — epsilon-greedy -- crawler (L11D3)]



Exploration Functions

= When to explore?
= Random actions: explore a fixed amount

= Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

= Exploration function

= Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g. f(u,n) = u + k/n

Regular Q-Update:  Q(s,a) <a R(s,a,5") +ymaxQ(s,a’)
Modified Q-Update: Q(s,a) <« R(s,a,s’) +~ max f(Q(s,d), N(s,ad))

= Note: this propagates the “bonus” back to states that lead to unknown states as well!

[Demo: exploration — Q-learning — crawler — exploration function (L11D4)]



Approximate Q-Learning




Generalizing Across States

Basic Q-Learning keeps a table of all g-values

In realistic situations, we cannot possibly learn
about every single state!

®" Too many states to visit them all in training

®= Too many states to hold the g-tables in memory

Instead, we want to generalize:

= Learn about some small number of training states from
experience
= Generalize that experience to new, similar situations

= This is a fundamental idea in machine learning, and we’ll
see it over and over again

[demo — RL pacman]



Example: Pacman

Let’s say we discover In naive g-learning, Or even this one!
through experience we know nothing
that this state is bad: about this state:




Feature-Based Representations

= Solution: describe a state using a vector of
features (properties)
= Features are functions from states to real numbers
(often 0/1) that capture important properties of the
state
= Example features:
= Distance to closest ghost
= Distance to closest dot
= Number of ghosts
= 1/ (dist to dot)?
= |s Pacman in a tunnel? (0/1)

= |s it the exact state on this slide?

= Can also describe a g-state (s, a) with features (e.g.
action moves closer to food)




Linear Value Functions

Using a feature representation, we can write a q function (or value function) for any
state using a few weights:

V(s) =wi1f1(s) +wafo(s) + ...+ wnfn(s)
Q(s,a) = wyf1(s,a)Fwafa(s,a)+...+wnfn(s,a)
Advantage: our experience is summed up in a few powerful numbers

Disadvantage: states may share features but actually be very different in value!



Approximate Q-Learning

Qs,0) = wifi(s,@)Fwafa(s, @)+ Awnfa(sa)

" Q-learning with linear Q-functions:

transition = (s,a,r,s’)
o Q(S,Ob)
Q(s,a) — Q(s,a) + o [difference] Exact Q's

difference = [7" + v max Q(s',a")
a

w; +— w; + « [difference] f;(s,a)  Approximate Q’s

= |ntuitive interpretation:
= Adjust weights of active features

= E.g., if something unexpectedly bad happens, blame the features that were on:
disprefer all states with that state’s features

" Formal justification: online least squares



Q-Learning and Least Squares




407

Linear Approximation: Regression

20

f1(x)

Prediction:
g = wg + wi f1(x)

Prediction:

y; = wo + wiy f1(x) + wafo(x)



Optimization: Least Squares

1

2
total error = Z (y; — 3)}-)2 =) (yf,; — Zwkfk(l'i))
; k
(/

. Error or “residual’
Observation Y

Prediction g

O f1(x) -



Minimizing Error

Imagine we had only one point x, with features f(x), target value y, and weights w:

2
error(w) = 5 (y - Zwkfm))
k

0 error(w)

OWm,

- (y - Zwkfk(ﬂf)) Jm(x)
k

Wm < Wm + (y - Zwkfk(w)) fm(z)
k
Approximate q update explained:

Wi — w4 |1+ yMaxQ(s',a') — Q(s, a) | fm(s,a)

“target” “prediction”



Tabular Q-Learning is Special Case

Wi — win 4 @ |7+ yMaxQ(s',d') — Q(s, )| fm(s, a)

“target” “prediction”

Qs,0) — (1 - )Q(5,0) + (o) |r + 7 MaxQ(s',a)

Q(s,@) < Q(s,@) +alr +ymaxQ(s',a") = Q(s, )]

If feature Is just an indicator for (s,a), then we recover
the original tabular setting.



Non-linear function approximation

V(s) = w1 f1(s) +wafo(s) + ...+ wnfn(s)
Q(s,a) = w1 f1(s,a)twafa(s,a)+...+wnfn(s,a)

V.S.

V(s) = fo(s)

Deep Learning!

Q(s,a) = fo(s,a)



Element of Neural Network

Neuron f:R¥X - R

Z=aw, +a,Ww, +-+a, w, +b

a2 _
F— O'(Z) . a
a ‘ Activation
K weights Z) function




Neural Network

Input Layer 1  Layer 2 Layer L  Output
X, o e . —)
<O > A

2 " | Y —
\ 4 @ Y2
nwe— L3 .. L —y
Input = v — Output
Layer Hidden Layers Layer

Deep means many hidden layers



Example of Neural Network

~N

Sigmoid Function 0'(2)1 _
1 05
O-(Z) lte”

\_ o =,




Example of Neural Network

. 0.98 > " 0.86 3 . 0.62
Ilr-f— | Ilrf
0 -2
, 0.12 ' 0.11 ; 0.83
1z — 3 e
0 2

Changing the parameters (weights) changes

the function!



Neural Networks: Non-linear function approximation

hidden layer 1 hidden layer 2 hidden layer 3

input layer

ue Action 1

States—> ue Action 2

ue Action 3

ue Action 4




Differences between RL and Supervised Learning

Predicting State-Action Value Predicting House Price

Input: size, #bedrooms,

Input: (s,a) nearby school ratings, year
built, etc.

Output: Qg (s, a) Output: fg(x)

Target: 7 + ymaxQy (s',a’) Target: $680K

RL has a non-stationary target! This leads to
Instabilities If using non-linear function approximation.



How to get Q-Learning to work with Deep Learning?

" Experience Replay Buffer
" Don’t throw away each transition (s,a,r,s’)
= Save them in a buffer or “replay memory”
" During training randomly sample a batch of transitions to update Q



How to get Q-Learning to work with Deep Learning?

= Target Network
= Keep the network for the target fixed and only update periodically

Like before we want to update Q to minimize the error:

" 2
error = — (r + ymaxQr(s’,a’;07) — Q(s, a; 9))
2 a’

Vgerror = — (r +ymaxQr(s',a’;07) — Q(s, a; 8)) Vo0(s,a;0)
a

Take step to decrease error (in the direction of the negative gradient)

0 < 0 Of(’r'+")/ mz}XQT(Slv a';H_)—Q(s,a; 9))V9Q(87 a, 9)




0 « 0+a(r+ymaxQr(s’,a’;07)—Q(s,a;0)) VoQ(s, a; 0)

hidden layer 1 hidden layer 2 hidden layer 3

input layer

Q Network

States—»

Updates 6~ every C timesteps

Ta rget | hidden layer 1 hidden layer 2 hidden layer 3
input layer
Network

States—>




High-Level Overview of DQN

0 6-+a(r+ymax Qr(s',a';07)—Q(s, a;0)) VoQ(s, a; 0)

DQN Loss Calculation

Environment Gradient loss Predicted Q Target Q
a
Environment [ Ll » Target
. Prediction Network
S 'y 'y r
(s, a)
- - - ™
~ - ~_—|(s’= Next State)
»  Replay Memory
(S ar S’) state (s, ), action (a,), new state

(S.41), reward (7;), and done
_ willbe stored -~




Deep RL Makes a Big Splash!

nature

Explore content v  About the journal v  Publish with us v Subscribe

nature > letters > article

Published: 25 February 2015

Human-level control through deep reinforcement
learning

Volodymyr Mnih, Koray Kavukcuoglu &, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare,

Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig_Petersen, Charles Beattie, Amir

Sadik, loannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg & Demis Hassabis
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The Arcade Learning Environment
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How do you learn from raw pixels?

" Too many parameters to have a weight for each pixel.
= Use a convolutional filter

13
Source pixel ~— |0 P
54 — 0
M —1 3 [
3 4 L1 ((1x3)+(0x0)+(1x1)+
—T6 | -{ 6 | (-2x2)+(0x6)+(2x2) +
P S an (1x2)+(0x4)+(1x1) =-3
2 5 -
apiar |
o=l == 6 } // ///
2 }./ 0 // =
2 41L-1 // =
2 == : // //
Convolution filter L // ==
[
(Sobel Gx) = /_/ //
Destination pixel L = L1
et i //
L
// //
.//
|~




How do you learn from raw pixels?

" Too many parameters to have a weight for each pixel.
= Use a convolutional filter
= Use several layers of multiple filters

C3: f. maps 16@10x10

INPUT % ;g:gge maps S4: f. maps 16@5x5

32x32 S2: f. maps C5: layer
6@14x14 I r 120 FS layer quPUT
' Full oomlection I Gaussaan connections
Convolutions Subsampling Convolutnons Subsamphng Full connection

LeCun, Yann, et al. "Gradient-based learning applied to document recognition.” 1998.



High-Level Architecture

" Lea rns to Hsee” Convglution Convglution Fullycgnnected
through trial and
error!
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Video Pinball |

Boxing |

Breakout |

Star Gunner |

Robotank |

Atlantis |

Crazy Climber i

Gopher |

Demon Attack |

Name This Game |

Krull |

Assault |

Road Runner |

Kangaroo :
James Bond

Tennis |

Pong |

Space Invaders |

Beam Rider |

Tutankham |

Kung-Fu Master |

Freeway |

Time Pilot |

Enduro |

Fishing Derby |

Up and Down |

Ice Hockey |

Q*bert |

H.E.R.O. |

Asterix |

Ms. Pac-Man |
Asteroids |
Frostbite |
Gravitar |
Private Eye :

At

\

human-level or above

k3%
f7%
fe%
3
f2%

Montezuma's Revenge

| 0%

nmn;nmlnmNW

Below human-level

Best linear learner

c—

100 200

4,500%



Lots of Advanced Exploration Strategies

Unifying Count-Based Exploration and Intrinsic Motivation
INCENTIVIZING EXPLORATION IN REINFORCEMENT

LEARNING WITH DEEP PREDICTIVE MODELS

Marc G. Bellemare Sriram Srinivasan Georg Ostrovski . . .
bellemare @ google.com srsrinivasan @ google.com ostrovski@ google.com Bradly C. Stadie Sergey Levine Pieter Abbeel
Department of Statistics EECS Department
University of California, Berkeley University of California, Berkeley
Tom Schaul David Saxton Rémi Munos Berkeley, CA 94720 Berkeley, CA 94720
schaul @ google.com saxton@google.com munos @ google.com bstadielberkeley.edu {svlevine, pabbeel}@cs.berkeley.edu

Google DeepMind
London, United Kingdom

EXPLORATION BY RANDOM NETWORK DISTILLATION

Yuri Burda® Harrison Edwards* Amos Storkey Oleg Klimov
OpenAl OpenAl Univ. of Edinburgh OpenAl

Great blog article: https://lilianweng.github.io/posts/2020-06-07-exploration-drl/



Exploration by Random Network Distillation

Random Network Distillation

ENVIRONMENT FEATURES
> 0jf] ———— f,i+1

a; i = |fi+1— fit1
kL POLICY PREDICTOR A
0; -

|2

fit1

PREDICTOR PREDICTOR

PARAMETERS ¢ OPTIMIZER - jﬁ "‘j%

010171 )
POLICY POLICY <

PARAMETERS < OPTIMIZER e
Ot Q¢ T'¢



DQN only works for discrete action spaces

= Next Time: How to deal with continuous action spaces
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