
Intro to Value-Based Reinforcement Learning

Instructor: Daniel Brown
University of Utah

[Some content borrowed from slides created by Dan Klein and Pieter Abbeel http://ai.berkeley.edu.]

What changes?

▪ Rather than planning, we now need to learn!

▪ No access to underlying MDP, can’t solve it with just computation

▪ You needed to actually act to figure it out

▪ Extension and generalization of Multi-Armed Bandits

▪ Important ideas in reinforcement learning that came up

▪ Exploration: you have to try unknown actions to get information

▪ Exploitation: eventually, you have to use what you know

▪ Regret: even if you learn intelligently, you make mistakes

▪ Sampling: because of chance, you have to try things repeatedly

▪ Difficulty: learning can be much harder than solving a known MDP

Example: Learning to Walk

Initial A Learning Trial After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]

Example: Learning to Walk

Initial
[Video: AIBO WALK – initial][Kohl and Stone, ICRA 2004]

Example: Learning to Walk

Training
[Video: AIBO WALK – training][Kohl and Stone, ICRA 2004]

Example: Learning to Walk

Finished
[Video: AIBO WALK – finished][Kohl and Stone, ICRA 2004]

https://vision-locomotion.github.io/

8

The Arcade Learning Environment

9

Reinforcement Learning

▪ Basic idea:
▪ Receive feedback in the form of rewards

▪ Agent’s utility is defined by the reward function

▪ Must (learn to) act so as to maximize expected rewards

▪ All learning is based on observed samples of outcomes!

Environment

Agent

Actions: a
State: s

Reward: r

Why Reinforcement Learning?

▪ Takes inspiration from nature

▪ Often easier to encode a task as a sparse reward (e.g. recognize if
goal is achieved) but hard to hand-code how to act so reward is
maximized (e.g. Go)

▪ General purpose AI framework

Reinforcement Learning

▪ Still assume a Markov decision process (MDP):

▪ A set of states s  S

▪ A set of actions (per state) A

▪ A model T(s,a,s’)

▪ A reward function R(s,a,s’)

▪ Still looking for a policy (s)

▪ New twist: don’t know T or R

▪ I.e. we don’t know which states are good or what the actions do

▪ Must actually try actions and states out to learn

Environment

Agent

Actions: a
State: s

Reward: r

Offline (MDPs) vs. Online (RL)

Offline Solution Online Learning

Model-Based Learning

Simple View of Model-Based RL

▪ Model-Based Idea:
▪ Learn an approximate model based on experiences
▪ Solve for values as if the learned model were correct

▪ Step 1: Learn empirical MDP model
▪ Count outcomes s’ for each s, a
▪ Normalize to give an estimate of
▪ Discover each when we experience (s, a, s’)

▪ Step 2: Solve the learned MDP
▪ For example, use value iteration, as before

Sometimes Model of World is Known

Deep RL Makes a Big Splash!

20

When might RL be a good tool for your problem?

When might RL be a good tool for your problem?

▪ Is your problem a sequential decision making problem?

▪ Are there “actions” that effect the next “state”?

▪ Do you know the rules of these effects?

▪ Can you write down a clear objective/score/reward/cost?

▪ Do you have a simulator?

▪ Lots of examples of sequences of decisions and their long-term
consequences?

▪ Is it unclear what to do in each state? Exploration required?

▪ Are you looking for unique/creative/super-human solutions?

When might RL not be a good tool?

When might RL not be a good tool?

▪ Single step or static problem

▪ No clear reward signal.

▪ Reward signal is unavailable or very hard to write down.

▪ Well-known model of the environment.

▪ Deterministic environment

▪ Low-tolerance for exploration and trial and error

▪ No need for adaptive or novel solutions. The goal is to perform
the task in a very predictable way.

Model-Free Learning

Passive Reinforcement Learning

Passive Reinforcement Learning

▪ Simplified task: policy evaluation
▪ Input: a fixed policy (s)

▪ You don’t know the transitions T(s,a,s’)

▪ You don’t know the rewards R(s,a,s’)

▪ Goal: learn the state values

▪ In this case:
▪ Learner is “along for the ride”

▪ No choice about what actions to take

▪ Just execute the policy and learn from experience

▪ This is NOT offline planning! You actually take actions in the world.

Direct Evaluation (Monte Carlo Evaluation)

▪ Goal: Compute values for each state under 

▪ Idea: Average together observed sample values

▪ Act according to 

▪ Every time you visit a state, write down what the
sum of discounted rewards turned out to be

▪ Average those samples

▪ This is called direct evaluation

Problems with Direct Evaluation

▪ What’s good about direct evaluation?

▪ It’s easy to understand

▪ It doesn’t require any knowledge of T, R

▪ It eventually computes the correct average values,
using just sample transitions

▪ What bad about it?

▪ It wastes information about state connections

▪ Each state must be learned separately

▪ So, it takes a long time to learn

Why Not Use Policy Evaluation?

▪ Simplified Bellman updates calculate V for a fixed policy:
▪ Each round, replace V with a one-step-look-ahead layer over V

▪ This approach fully exploited the connections between the states
▪ Unfortunately, we need T and R to do it!

▪ Key question: how can we do this update to V without knowing T and R?
▪ In other words, how to we take a weighted average without knowing the weights?

(s)

s

s, (s)

s, (s),s’

s’

Sample-Based Policy Evaluation?

▪ We want to improve our estimate of V by computing these averages:

▪ Idea: Take samples of outcomes s’ (by doing the action!) and average

(s)

s

s, (s)

s1's2' s3'

s, (s),s’

s'

Almost! But we can’t
rewind time to get sample
after sample from state s.

Temporal Difference Learning

▪ Big idea: learn from every experience!
▪ Update V(s) each time we experience a transition (s, a, s’, r)

▪ Likely outcomes s’ will contribute updates more often

▪ Temporal difference learning of values
▪ Policy still fixed, still doing evaluation!

▪ Move values toward value of whatever successor occurs: running average

(s)

s

s, (s)

s’

Sample of V(s):

Update to V(s):

Same update:

Exponential Moving Average

▪ Exponential moving average

▪ The running interpolation update:

▪ Makes recent samples more important:

▪ Forgets about the past (distant past values were wrong anyway)

▪ Decreasing learning rate (alpha) can give converging averages

Example: Temporal Difference Learning

Assume:  = 1, α = 1/2

Observed Transitions

B, east, C, -2

0

0 0 8

0

0

-1 0 8

0

0

-1 3 8

0

C, east, D, -2

A

B C D

E

States

Problems with TD Value Learning

▪ TD value leaning is a model-free way to do policy evaluation, mimicking
Bellman updates with running sample averages

▪ However, if we want to turn values into a (new) policy, we’re sunk:

▪ Idea: learn Q-values, not values

▪ Makes action selection model-free too!

a

s

s, a

s,a,s’

s’

Active Reinforcement Learning

Active Reinforcement Learning

▪ Full reinforcement learning: optimal policies (like value iteration)
▪ You don’t know the transitions T(s,a,s’)

▪ You don’t know the rewards R(s,a,s’)

▪ You choose the actions now

▪ Goal: learn the optimal policy / values

▪ In this case:
▪ Learner makes choices!

▪ Fundamental tradeoff: exploration vs. exploitation

▪ This is NOT offline planning! You actually take actions in the world and
find out what happens…

Detour: Q-Value Iteration

▪ Value iteration: find successive (depth-limited) values
▪ Start with V0(s) = 0, which we know is right
▪ Given Vk, calculate the depth k+1 values for all states:

▪ Can we write out a bellman equation like value iteration, but only using Q values?

Detour: Q-Value Iteration

▪ Value iteration: find successive (depth-limited) values
▪ Start with V0(s) = 0, which we know is right
▪ Given Vk, calculate the depth k+1 values for all states:

▪ But Q-values are more useful, so compute them instead
▪ Start with Q0(s,a) = 0, which we know is right
▪ Given Qk, calculate the depth k+1 q-values for all q-states:

Q-Learning

▪ Q-Learning: sample-based Q-value iteration

▪ Learn Q(s,a) values as you go

▪ Receive a sample (s,a,s’,r)

▪ Consider your old estimate:

▪ Consider your new sample estimate:

▪ Incorporate the new estimate into a running average:

[Demo: Q-learning – gridworld (L10D2)]
[Demo: Q-learning – crawler (L10D3)]

Example

+1-1
A B C D

𝛼 =
1

2
, 𝛾 = 1.

Experience: (D,exit, terminal, +1), (C,->,D,0)

Q-Learning Properties

▪ Amazing result: Q-learning converges to optimal policy -- even
if you’re acting suboptimally!

▪ This is called off-policy learning

▪ Caveats:

▪ You have to explore enough

▪ You have to eventually make the learning rate

 small enough

▪ … but not decrease it too quickly

▪ Basically, in the limit, it doesn’t matter how you select actions (!)

Model-Free Learning

▪ Model-free (temporal difference) learning

▪ Experience world through episodes

▪ Update estimates each transition

▪ Over time, updates will mimic Bellman updates

r

a

s

s, a

s’

a’

s’, a’

s’’

Q-Learning Recap

▪ We’d like to do Q-value updates to each Q-state:

▪ But can’t compute this update without knowing T, R

▪ Instead, compute average as we go
▪ Receive a sample transition (s,a,r,s’)

▪ This sample suggests

▪ But we want to average over results from (s,a) (Why?)

▪ So keep a running average

𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼(𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄(𝑠, 𝑎))

Useful alternate form of

update for Q-learning.

We want to push the Q-

value towards the sample!

Exploration vs. Exploitation

How to Explore?

▪ Several schemes for forcing exploration
▪ Simplest: random actions (-greedy)

▪ Every time step, flip a coin

▪ With (small) probability , act randomly

▪ With (large) probability 1-, act on current policy

▪ Problems with random actions?
▪ You do eventually explore the space, but keep

thrashing around once learning is done

▪ One solution: lower  over time

▪ Another solution: exploration functions

[Demo: Q-learning – manual exploration – bridge grid (L11D2)]
[Demo: Q-learning – epsilon-greedy -- crawler (L11D3)]

Exploration Functions

▪ When to explore?

▪ Random actions: explore a fixed amount

▪ Better idea: explore areas whose badness is not
 (yet) established, eventually stop exploring

▪ Exploration function

▪ Takes a value estimate u and a visit count n, and
 returns an optimistic utility, e.g.

▪ Note: this propagates the “bonus” back to states that lead to unknown states as well!

Modified Q-Update:

Regular Q-Update:

[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]

Approximate Q-Learning

Generalizing Across States

▪ Basic Q-Learning keeps a table of all q-values

▪ In realistic situations, we cannot possibly learn
about every single state!
▪ Too many states to visit them all in training

▪ Too many states to hold the q-tables in memory

▪ Instead, we want to generalize:
▪ Learn about some small number of training states from

experience

▪ Generalize that experience to new, similar situations

▪ This is a fundamental idea in machine learning, and we’ll
see it over and over again

[demo – RL pacman]

Example: Pacman

Let’s say we discover
through experience

that this state is bad:

In naïve q-learning,
we know nothing
about this state:

Or even this one!

Feature-Based Representations

▪ Solution: describe a state using a vector of
features (properties)
▪ Features are functions from states to real numbers

(often 0/1) that capture important properties of the
state

▪ Example features:
▪ Distance to closest ghost
▪ Distance to closest dot
▪ Number of ghosts
▪ 1 / (dist to dot)2

▪ Is Pacman in a tunnel? (0/1)
▪ …… etc.
▪ Is it the exact state on this slide?

▪ Can also describe a q-state (s, a) with features (e.g.
action moves closer to food)

Linear Value Functions

▪ Using a feature representation, we can write a q function (or value function) for any
state using a few weights:

▪ Advantage: our experience is summed up in a few powerful numbers

▪ Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

▪ Q-learning with linear Q-functions:

▪ Intuitive interpretation:
▪ Adjust weights of active features
▪ E.g., if something unexpectedly bad happens, blame the features that were on:

disprefer all states with that state’s features

▪ Formal justification: online least squares

Exact Q’s

Approximate Q’s

Q-Learning and Least Squares

0 20
0

20

40

0

10
20

30

40

0

10

20

30

20

22

24

26

Linear Approximation: Regression

Prediction: Prediction:

Optimization: Least Squares

0 20
0

Error or “residual”

Prediction

Observation

Minimizing Error

Approximate q update explained:

Imagine we had only one point x, with features f(x), target value y, and weights w:

“target” “prediction”

Tabular Q-Learning is Special Case

“target” “prediction”

𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼[𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎]

If feature is just an indicator for (s,a), then we recover

the original tabular setting.

Non-linear function approximation

v.s.

𝑉 𝑠 = 𝑓𝜃 𝑠

𝑄 𝑠, 𝑎 = 𝑓𝜃(𝑠, 𝑎)

Deep Learning!

Changing the parameters (weights) changes

the function!

Neural Networks: Non-linear function approximation

Differences between RL and Supervised Learning

Input: (s,a)

Output: 𝑄𝜃(𝑠, 𝑎)
Target: 𝑟 + 𝛾max

𝑎′
𝑄𝜃 𝑠′, 𝑎′

Input: size, #bedrooms,

nearby school ratings, year

built, etc.

Output: 𝑓𝜃(𝒙)
Target: $680𝐾

Predicting House PricePredicting State-Action Value

RL has a non-stationary target! This leads to

instabilities if using non-linear function approximation.

How to get Q-Learning to work with Deep Learning?

▪ Experience Replay Buffer

▪ Don’t throw away each transition (s,a,r,s’)

▪ Save them in a buffer or “replay memory”

▪ During training randomly sample a batch of transitions to update Q

How to get Q-Learning to work with Deep Learning?

▪ Target Network

▪ Keep the network for the target fixed and only update periodically

Like before we want to update Q to minimize the error:

𝑒𝑟𝑟𝑜𝑟 =
1

2
𝑟 + 𝛾max

𝑎′
𝑄𝑇 𝑠′, 𝑎′; 𝜃− − 𝑄 𝑠, 𝑎; 𝜃

2

∇𝜃𝑒𝑟𝑟𝑜𝑟 = − 𝑟 + 𝛾max
𝑎′

𝑄𝑇 𝑠′, 𝑎′; 𝜃− − 𝑄 𝑠, 𝑎; 𝜃 ∇𝜃𝑄(𝑠, 𝑎; 𝜃)

Take step to decrease error (in the direction of the negative gradient)

Updates 𝜃− every C timesteps

Q Network

Target
Network

𝑄(𝑠, 𝑎; 𝜃)

𝑄𝑇(𝑠′, 𝑎′; 𝜃−)

High-Level Overview of DQN

74

Environment

(s, a, r, s’)

Deep RL Makes a Big Splash!

75

76

The Arcade Learning Environment

77

How do you learn from raw pixels?

▪ Too many parameters to have a weight for each pixel.

▪ Use a convolutional filter

78

How do you learn from raw pixels?

▪ Too many parameters to have a weight for each pixel.

▪ Use a convolutional filter

▪ Use several layers of multiple filters

LeCun, Yann, et al. "Gradient-based learning applied to document recognition.” 1998.

High-Level Architecture

80

▪ Learns to “see”
through trial and
error!

▪ Learns what actions
to take to maximize
game score.

▪ Epsilon-greedy
exploration.

82

Lots of Advanced Exploration Strategies

Great blog article: https://lilianweng.github.io/posts/2020-06-07-exploration-drl/

Exploration by Random Network Distillation

DQN only works for discrete action spaces

▪ Next Time: How to deal with continuous action spaces

	Slide 1: Intro to Value-Based Reinforcement Learning
	Slide 2: What changes?
	Slide 3: Example: Learning to Walk
	Slide 4: Example: Learning to Walk
	Slide 5: Example: Learning to Walk
	Slide 6: Example: Learning to Walk
	Slide 7: https://vision-locomotion.github.io/
	Slide 8
	Slide 9: The Arcade Learning Environment
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Reinforcement Learning
	Slide 14: Why Reinforcement Learning?
	Slide 15: Reinforcement Learning
	Slide 16: Offline (MDPs) vs. Online (RL)
	Slide 17: Model-Based Learning
	Slide 18: Simple View of Model-Based RL
	Slide 19: Sometimes Model of World is Known
	Slide 20: Deep RL Makes a Big Splash!
	Slide 21: When might RL be a good tool for your problem?
	Slide 22: When might RL be a good tool for your problem?
	Slide 23: When might RL not be a good tool?
	Slide 24: When might RL not be a good tool?
	Slide 25: Model-Free Learning
	Slide 26: Passive Reinforcement Learning
	Slide 27: Passive Reinforcement Learning
	Slide 28: Direct Evaluation (Monte Carlo Evaluation)
	Slide 29: Problems with Direct Evaluation
	Slide 30: Why Not Use Policy Evaluation?
	Slide 31: Sample-Based Policy Evaluation?
	Slide 32: Temporal Difference Learning
	Slide 33: Exponential Moving Average
	Slide 34: Example: Temporal Difference Learning
	Slide 35: Problems with TD Value Learning
	Slide 36: Active Reinforcement Learning
	Slide 37: Active Reinforcement Learning
	Slide 38: Detour: Q-Value Iteration
	Slide 39: Detour: Q-Value Iteration
	Slide 40: Q-Learning
	Slide 41: Example
	Slide 42: Q-Learning Properties
	Slide 43: Model-Free Learning
	Slide 44: Q-Learning Recap
	Slide 45: Exploration vs. Exploitation
	Slide 46: How to Explore?
	Slide 47: Exploration Functions
	Slide 48: Approximate Q-Learning
	Slide 49: Generalizing Across States
	Slide 50: Example: Pacman
	Slide 53: Feature-Based Representations
	Slide 54: Linear Value Functions
	Slide 55: Approximate Q-Learning
	Slide 58: Q-Learning and Least Squares
	Slide 59: Linear Approximation: Regression
	Slide 60: Optimization: Least Squares
	Slide 61: Minimizing Error
	Slide 62: Tabular Q-Learning is Special Case
	Slide 63: Non-linear function approximation
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68: Neural Networks: Non-linear function approximation
	Slide 69: Differences between RL and Supervised Learning
	Slide 70: How to get Q-Learning to work with Deep Learning?
	Slide 71: How to get Q-Learning to work with Deep Learning?
	Slide 73
	Slide 74: High-Level Overview of DQN
	Slide 75: Deep RL Makes a Big Splash!
	Slide 76
	Slide 77: The Arcade Learning Environment
	Slide 78: How do you learn from raw pixels?
	Slide 79: How do you learn from raw pixels?
	Slide 80: High-Level Architecture
	Slide 81
	Slide 82
	Slide 83: Lots of Advanced Exploration Strategies
	Slide 84: Exploration by Random Network Distillation
	Slide 93: DQN only works for discrete action spaces

