Inverse RL and Reward Learning

Instructor: Daniel Brown

[Some slides adapted from Sergey Levine (CS 285) and Alina Vereshchaka (CSE4/510)]

Reward Learning (Inverse Reinforcement Learning)

Why not just imitate behavior? (Behavioral Cloning)

Human Intent Inference

Inverse Reinforcement Learning

- Given
 - MDP without a reward function
 - Demonstrations from an optimal policy π^*
- Recover the reward function *R* that makes π^* optimal

Imitation Learning

Behavioral Cloning

$$\Rightarrow \pi$$

- Answers the "How?" question
- Mimic the demonstrator
- Learn mapping from states to actions
- Computationally efficient
- Compounding errors

Inverse Reinforcement Learning

 $\Rightarrow R \Rightarrow \pi$

- Answers the "Why?" question
- Explain the demonstrator's behavior
- Learn a reward function capturing the demonstrator's intent
- Can require lots of data and compute
- Better generalization. Can recover from arbitrary states

IRL Example: Teaching a robot to navigate through demonstrations

Toy version

Inverse Reinforcement Learning Formalism

- Given
 - MDP without a reward function
 - Demonstrations from an optimal policy π^*
- Recover a reward function *R* that makes π^* optimal
- Ill-Posed Problem
 - Infinite number of reward functions that can make π^* optimal
 - Trivial all zero reward
 - Constant reward
 - aR + c (positive scaling a>0, and affine shifts)

Simpler problem: What if you know the policy?

How would you do this more generally?

Basic IRL Algorithm

- Start with demonstrations, D
- Guess initial reward function R_0
- $\hat{R} = R_0$
- Loop:
 - Solve for optimal policy $\pi_{\widehat{R}}^*$
 - Compare *D* and $\pi_{\hat{R}}^*$
 - Update \hat{R} to try and make D and $\pi_{\hat{R}}^*$ more similar

Feature count matching

• Assume the reward function is a linear combination of features:

$$R(s) = \mathbf{w}^T \phi(s)$$

• Value function becomes linear combination of (discounted) feature expectations:

$$V_R^{\pi} = \mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^t R(s_t) \right]$$

Feature count matching

• Assume the reward function is a linear combination of features:

$$R(s) = \mathbf{w}^T \phi(s)$$

• Value function becomes linear combination of (discounted) feature expectations:

$$V_R^{\pi} = \mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^t \mathbf{w}^t \phi(s_t) \right]$$

Feature count matching

• Assume the reward function is a linear combination of features:

$$R(s) = \mathbf{w}^T \phi(s)$$

• Value function becomes linear combination of (discounted) feature expectations:

$$V_R^{\pi} = \mathbf{w}^T \mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^t \phi(s_t) \right] = \mathbf{w}^T \mu_{\pi}$$

Inverse reinforcement learning: feature matching (Abbeel and Ng 2004, Syed and Schapire 2007)

• If $||w||_1 \le 1$, then $|x^{\top}y| \le ||x||_1 ||y||_{\infty}$

$$V_R^{\pi^*} - V_R^{\pi_{\text{robot}}} = \mathbf{w}^T (\mu_{\pi^*} - \mu_{\pi_{\text{robot}}})$$
$$\leq \|\mu_{\pi^*} - \mu_{\pi_{\text{robot}}}\|_{\infty}$$

- If feature expectations match, then expected returns are identical.
- Idea: Can we update the reward guess \hat{R} so the feature counts get closer?

Problem: Many different policies can lead to same expected feature counts

Maximum Entropy IRL (Ziebart et al. 2008)

 $P(\tau) = \frac{e^{R_w(\tau)}}{Z}$

 $R(s) = \mathbf{w}^T \phi(s)$

- Collect M demonstrations $D = \{\tau_1, ..., \tau_M\}$
- Initialize reward weights **w**
- Loop
 - Solve for (soft) optimal policy $\pi(a|s)$ via Value Iteration
 - Solve for expected feature counts of $\pi(a|s)$
 - Compute weight update $w \leftarrow w + \alpha(\mu_D \mu_\pi)$

Soft Value Iteration

$$\pi_{\Theta} \left(A_t | S_t \right) = e^{Q_{\pi_{\Theta}}^{\text{soft}}(A_t, S_t) - V_{\pi_{\Theta}}^{\text{soft}}(S_t)}$$
$$V_{\pi_{\Theta}}^{\text{soft}} \left(S_t \right) = \log \sum_{A_t \in \mathcal{A}} e^{Q_{\pi_{\Theta}}^{\text{soft}}(A_t, S_t)}$$
Soft Maximum

Policy is a softmax policy.

Softmax is a Soft Maximum

- Assume b > a
- $\log(e^a + e^b) =$
- If a = b
- $\log(e^a + e^b) =$

• In general $\max\{x_1, x_2, \dots, x_n\} \le \log \sum_i \exp(x_i) \le \max\{x_1, \dots, x_n\} + \log n$

Soft Value Iteration

- Initialize values
- Repeat until convergence:
 - Solve for Q
 - Solve for V

Watch This: Scalable Cost-Function Learning for Path Planning in Urban Environments

Markus Wulfmeier¹, Dominic Zeng Wang¹ and Ingmar Posner¹

Fig. 1: Schema for training neural networks in the Maximum Entropy paradigm for IRL.

Another way to look at MaxEnt IRL

$$P(\tau) = \frac{e^{R_w(\tau)}}{Z} \qquad Z = \int e^{R_w(\tau)} d\tau$$

- Maximum Likelihood Estimation
- Find reward function that maximizes the log likelihood of the demonstration trajectories:

$$\max_{\theta} \frac{1}{N} \sum_{\tau \in D} R_w(\tau) - \log Z$$

How to avoid fully solving MDP

$$\max_{\theta} \frac{1}{N} \sum_{\tau \in D} R_w(\tau) - \log Z \qquad Z = \int e^{R_w(\tau)} d\tau$$

- Estimate Z with a finite set of trajectories Z_{τ} .
- Loop:
 - Update parameters w so demonstrations have higher reward than trajectories in Z_{τ} .
 - Update Z_{τ}

How to make this more tractable

Relative Entropy Inverse Reinforcement Learning

 Abdeslam Boularias
 Jens Kober
 Jan Peters

 Max-Planck Institute for Intelligent Systems
 72076 Tübingen, Germany

 {abdeslam.boularias,jens.kober,jan.peters}@tuebingen.mpg.de

Uniform sampling to approximate Z.

 $P(\tau)$

Learning Objective Functions for Manipulation

Mrinal Kalakrishnan^{*}, Peter Pastor^{*}, Ludovic Righetti^{*†}, and Stefan Schaal^{*†} kalakris@usc.edu, pastorsa@usc.edu, ludovic.righetti@a3.epfl.ch, sschaal@usc.edu *CLMC Lab, University of Southern California, Los Angeles CA 90089 [†]Max Planck Institute for Intelligent Systems, Tübingen, Germany 72076

Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization

Chelsea Finn Sergey Levine Pieter Abbeel University of California, Berkeley, Berkeley, CA 94709 USA CBFINN@EECS.BERKELEY.EDU SVLEVINE@EECS.BERKELEY.EDU PABBEEL@EECS.BERKELEY.EDU Noisy perturbations of demonstrations to approximate Z

Use current policy to approximate Z. Alternate between a few steps of reward updates and a few steps of policy updates.

 $e^{R_W(\tau)}$

Finn et al. "Guided Cost Learning." 2016

GANs (Generative Adversarial Networks)

GAIL (Generative Adversarial Imitation Learning)

Ho and Ermon, 2016

What if we don't want just a single reward estimate?

• Can we get a samples from the full Bayesian posterior?

$P(R|D) \propto P(D|R)P(R)$

Bayesian Inverse Reinforcement Learning (Ramachandran and Amir 2007)

- Assume demonstrator is Boltzmann rational
 - Demonstrator follows a softmax policy with inverse temperature c

$$P(D|R) = \prod_{(s,a)\in D} \frac{e^{\beta Q^*(s,a,R)}}{\sum_{b\in A} e^{\beta Q^*(s,b,R)}}$$

 $Q^*(s, a, R) = {
m How \ much \ reward \ will \ I \ expect \ to \ see \ if \ I \ take \ action} \ a \ in \ state \ s \ and \ act \ optimally \ thereafter.$

Bayesian Inverse Reinforcement Learning (Ramachandran and Amir 2007)

- Assume demonstrator is Boltzmann rational
 - Demonstrator follows a softmax policy with inverse temperature β

$$\begin{split} P(D|R) &= \prod_{(s,a)\in D} \underbrace{\frac{e^{\beta Q^*(s,a,R)}}{\sum_{b\in A} e^{\beta Q^*(s,b,R)}}}_{\substack{b\in A} e^{\beta Q^*(s,b,R)}} \end{split}$$

Bayesian Inverse Reinforcement Learning (Ramachandran and Amir 2007)

- Assume demonstrator is Boltzmann rational
 - Demonstrator follows a softmax policy with inverse temperature β

$$P(D|R) = \prod_{(s,a)\in D} \frac{e^{\beta Q^*(s,a,R)}}{\sum_{b\in A} e^{cQ^*(s,b,R)}}$$

Perform Bayesian inference (MCMC) to sample from posterior distribution

$$P(R|D) \propto P(D|R)P(R)$$

Applications of Bayesian IRL

- Active Learning
- Uncertainty Estimation
- Demonstration Sufficiency

Center for Human-Compatible Artificial Intelligence

Autonomous Assessment of Demonstration Sufficiency via Bayesian Inverse Reinforcement Learning

Tu (Alina) Trinh University of California, Berkeley Haoyu Chen Daniel S. Brown University of Utah University of Utah

Learning From Demonstration (LfD)

- Have I provided enough demonstrations?
- Are my demonstrations informative enough?
- Should I just supervise the robot?

- Have I received enough demonstrations?
- Are these demonstrations informative enough?

Demonstration Insufficiency

Demonstration Insufficiency

Uninformative Demos

Demonstration Insufficiency

Demonstration Insufficiency

Demonstration Sufficiency

Demonstration Sufficiency

Demos

Demonstration Sufficiency

Demonstration Sufficiency

- Have I received enough demonstrations?
- Are these demonstrations informative enough?
- What is the reward function?
- How do I measure policy "goodness"?

Measuring Policy Goodness

• Normalized expected value difference (**nEVD**)

$$nEVD(\pi_{\text{robot}}, R^*) = \frac{V_{R^*}^* - V_{R^*}^{\pi_{\text{robot}}}}{V_{R^*}^* - V_{R^*}^{\pi_{\text{rand}}}}$$

• Puts policy regret in interpretable percentage form

Measuring Policy Goodness

• Normalized expected value difference (nEVD)

$$nEVD(\pi_{\text{robot}}, R^*) = \frac{V_{R^*}^* - V_{R^*}^{\pi_{\text{robot}}}}{V_{R^*}^* - V_{R^*}^{\pi_{\text{rand}}}}$$

- Puts policy regret in interpretable percentage form
- We only have an estimate of R*, so...

Comparing With Theoretical Bounds

How many demonstrations is enough for a simple gridworld?

nEVD Threshold	Ours	Abbeel and Ng '04	Syed and Schapire '07
0.1	17	1,600,000	3,700,000
0.3	16	180,000	410,000
0.5	15	65,000	150,000
			(

based on Chernoff-Hoeffding bound

[1] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. ICML 2004.[2] Umar Syed and Robert E Schapire. A game-theoretic approach to apprenticeship learning. NeurIPS 2007.

Baselines and Environments

- Convergence heuristic
- Validation set heuristic

Baselines and Environments

- Convergence heuristic
- Validation set heuristic

Simulation Results

Ours Convergence Valid. Set

User Study Results

User Study Results

robust against suboptimal demonstrations: ~12%

Future Work

Autonomous Assessment of Demonstration Sufficiency via Bayesian Inverse Reinforcement Learning

What if I want to learn rewards from more than demonstrations?

Reward-rational (implicit) choice: A unifying formalism for reward learning

Hong Jun Jeon^{*1}, Smitha Milli^{*2}, Anca Dragan² hjjeon@stanford.edu, smilli@berkeley.edu, anca@berkeley.edu *Equal contribution, ¹Stanford University, ²University of California, Berkeley

How do we learn from diverse types of feedback of unknown quality?

ERGEN

Unifying Human Feedback Types

Boltzmann Rational Choice Model $C = \{c_1, \dots, c_n\} \quad r: C \to \mathbb{R}$ $\mathbb{P}(c_i | r) = \frac{\exp(\beta r(c_i))}{\sum_C \exp(\beta r(c'))}$

$\beta \rightarrow 0$ random (non-rational) choices

 $\beta \rightarrow \infty$ deterministic (perfectly-rational) choices

Jeon et al. "Reward-rational (implicit) choice: A unifying formalism for reward learning." NeurIPS 2020.

Trajectory Comparisons (Pairwise Prefs)

 τ_2 τ_1

 $C = \{\tau_1, \tau_2\}$

Boltzmann Rational Choice Model $C = \{c_1, \dots, c_n\} \quad r: C \to \mathbb{R}$ $\mathbb{P}(c_i | r) = \frac{\exp(\beta r(c_i))}{\sum_C \exp(\beta r(c'))}$

$$\mathbb{P}(\tau_i|r) = \frac{\exp(\beta r(\tau_i))}{\exp(\beta r(\tau_i)) + \exp(\beta r(\tau_i))}$$

Demonstrations

C = {All Possible Trajectories }

$$\mathbb{P}(\tau|r) = \frac{\exp(\beta r(\tau))}{\sum_{\mathrm{T}} \exp(\beta r(\tau'))}$$

Boltzmann Rational Choice Model $C = \{c_1, \dots, c_n\} \quad r: C \to \mathbb{R}$ $\mathbb{P}(c_i | r) = \frac{\exp(\beta r(c_i))}{\sum_C \exp(\beta r(c'))}$

E-Stops

$$\mathbb{P}(\tau_{:i}|r) = \frac{\exp(\beta r(\tau_{:i}))}{\sum_{1}^{T} \exp\beta r(\tau_{:j}))}$$

Reward Learning from Human Feedback

- Assume demonstrator is Boltzmann rational
 - Demonstrator follows a softmax policy with inverse temperature β

$$C = \{c_1, \dots, c_n\} \quad r: C \to \mathbb{R}$$
$$\mathbb{P}(c_i | r) = \frac{\exp(\beta r(c_i))}{\sum_C \exp(\beta r(c'))}$$

Perform Bayesian inference (MCMC) to sample from posterior distribution

$$P(R|D) \propto P(D|R)P(R)$$

RL from Human Feedback (RLHF)

RL from Human Preferences

https://arxiv.org/abs/1706.03741

Why would you want to learn a reward from ranked examples?

Inverse Reinforcement Learning

Prior approaches ...

1. Typically couldn't do much better than the demonstrator.

2. Were hard to scale to complex problems.

Pre-Ranked Demonstrations

Inverse Reinforcement Learning

Prior approaches ...

Pre-Ranked Demonstrations

- Typically couldn't do much better than the demonstrator.
- Find a reward function that explains the ranking, allowing for extrapolation.
- 2. Were hard to scale to complex problems.

Inverse Reinforcement Learning

Prior approaches ...

Pre-Ranked Demonstrations

 Typically couldn't do much better than the demonstrator.

Find a reward function that explains the ranking, allowing for extrapolation.

2. Were hard to scale to complex problems.

Reward learning becomes a supervised learning problem.

Trajectory-ranked Reward Extrapolation (T-REX)

Pre-ranked demonstrations

Trajectory-ranked Reward Extrapolation (T-REX)

Pre-ranked demonstrations

T-REX Policy

Reward Function

 $R_{\theta}: S \to \mathbb{R}$

Examples of S:

Current Robot Joint Angles and Velocities

$$\boxed{\swarrow} \rightarrow 0.5 \qquad \boxed{\checkmark} \rightarrow -0.7$$

Reward Function

 $R_{\theta}: S \to \mathbb{R}$

Examples of S:

Current Robot Joint Angles and Velocities

> Short Sequence of Images

Trajectory-ranked Reward Extrapolation (T-REX) $\tau_1 \prec \tau_2 \prec \cdots \prec \tau_T$

$$\sum_{s \in \tau_1} R_{\theta}(s) < \sum_{s \in \tau_2} R_{\theta}(s)$$

Bradley-Terry pairwise ranking loss

$$\exp\sum_{s\in\tau_j}R_\theta(s)$$

$$\mathcal{L}(\theta) = -\sum_{\tau_i \prec \tau_j} \exp\sum_{s \in \tau_i} R_{\theta}(s) + \exp\sum_{s \in \tau_j} R_{\theta}(s)$$

T-REX Policy Performance

Reward Extrapolation

T-REX can extrapolate beyond the performance of the best demo

"Autonomous Driving" in Atari

Best demo (Score = 84)

T-REX (Score = 520)

Uses only 12 ranked demonstrations

Atari Breakout

What if you don't have explicit preference labels?

Learning from a learner [ICML'19]

Automatic preference label generation [CoRL'20]

Automatic Rankings via Noise Injection

- Assumption: Demonstrator is significantly better than a purely random policy.
- Provides automatic rankings as noise increases.
- Generates a large diverse set of ranked demonstrations

Brown et al. "Better-than-Demonstrator Imitation Learning via Automatically-Ranked Demonstrations." CoRL 2019

Disturbance-based Reward Extrapolation (D-REX)

3-72

Brown et al. "Better-than-Demonstrator Imitation Learning via Automatically-Ranked Demonstrations." CoRL 2019

Disturbance-based Reward Extrapolation (D-REX)

Disturbance-based Reward Extrapolation (D-REX)

Experiments

D-REX consistently outperforms the best demonstration as well as outperforming BC and GAIL.

Brown et al. "Better-than-Demonstrator Imitation Learning via Automatically-Ranked Demonstrations." CoRL 2019

AI systems can **efficiently** infer human intent from **suboptimal demonstrations**.

T-REX only learns a maximum likelihood estimate of the reward function.

Reward Hacking

- Overfit to spurious correlations
- No consideration of alternative hypotheses

Idea: Fast Bayesian Inference

Brown et al. "Safe Imitation Learning via Fast Bayesian Reward Inference from Preferences." ICML 2020. ¹²⁵

Next time: LLMs and ChatGPT

Prompts Dataset

