
Inverse RL and 
Reward Learning

Instructor: Daniel Brown
[Some slides adapted from Sergey Levine (CS 285) and Alina Vereshchaka (CSE4/510)]
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Why not just imitate behavior?
(Behavioral Cloning)
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What would the 
human do?

Policy 𝜋
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Credit: Simone Giertz
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Human Intent Inference



Inverse Reinforcement Learning 

● Given 

○ MDP without a reward function

○ Demonstrations from an optimal policy 𝜋∗ 

● Recover the reward function 𝑹 that makes 𝜋∗ optimal



Imitation Learning  a

Behavioral Cloning

• Answers the “How?” question
• Mimic the demonstrator
• Learn mapping from states to 

actions
• Computationally efficient
• Compounding errors

Inverse Reinforcement 
Learning

• Answers the “Why?” question
• Explain the demonstrator’s behavior
• Learn a reward function capturing 

the demonstrator’s intent
• Can require lots of data and compute
• Better generalization. Can recover 

from arbitrary states

𝑅



IRL Example: Teaching a robot to navigate 
through demonstrations



Toy version 
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Inverse Reinforcement Learning Formalism 

● Given 

○ MDP without a reward function

○ Demonstrations from an optimal policy 𝜋∗ 

● Recover a reward function 𝑹 that makes 𝜋∗ optimal

● Ill-Posed Problem

○ Infinite number of reward functions that can make 𝜋∗ optimal

■ Trivial all zero reward

■ Constant reward

■ 𝑎𝑅 + 𝑐  (positive scaling a>0, and affine shifts)



Simpler problem: What if you know the policy?



How would you do this more generally?



Basic IRL Algorithm

● Start with demonstrations, 𝐷
● Guess initial reward function 𝑅0
● ෠𝑅 = 𝑅0
● Loop:

○ Solve for optimal policy 𝜋 ෠𝑅
∗

○ Compare 𝐷 and 𝜋 ෠𝑅
∗

○ Update ෠𝑅 to try and make 𝐷 and 𝜋 ෠𝑅
∗  more similar



Feature count matching

• Assume the reward function is a linear combination of features:

• Value function becomes linear combination of (discounted) 
feature expectations:

Abbeel and Ng, “Apprenticeship learning via inverse reinforcement learning.” ICML, 2004.
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• Assume the reward function is a linear combination of features:

• Value function becomes linear combination of (discounted) 
feature expectations:

Abbeel and Ng, “Apprenticeship learning via inverse reinforcement learning.” ICML, 2004.

Feature count matching

= 𝑤𝑇𝜇𝜋



Inverse reinforcement learning: feature 
matching
(Abbeel and Ng 2004, Syed and Schapire 2007)

• If ||𝒘||1 ≤ 1, then

• If feature expectations match, then expected returns are identical.

• Idea: Can we update the reward guess ෠𝑅 so the feature counts get 
closer?

Abbeel and Ng, “Apprenticeship learning via inverse reinforcement learning.” ICML, 2004.



Problem: Many different policies can lead 
to same expected feature counts



Maximum Entropy IRL 
(Ziebart et al. 2008)
• Collect M demonstrations D = {𝜏1, … , 𝜏𝑀}

• Initialize reward weights 𝒘

• Loop
• Solve for (soft) optimal policy 𝜋 𝑎 𝑠  via Value Iteration

• Solve for expected feature counts of 𝜋(𝑎|s)

• Compute weight update 𝒘 ← 𝒘 + 𝛼 𝜇𝐷 − 𝜇𝜋

𝑃 𝜏 =
𝑒𝑅𝑤(𝜏)

𝑍



Soft Value Iteration

Soft Maximum

Policy is a softmax policy.



Softmax is a Soft Maximum

• Assume b > a

• log 𝑒𝑎 + 𝑒𝑏 =

• If a = b

• log 𝑒𝑎 + 𝑒𝑏 =

• In general max 𝑥1, 𝑥2, … , 𝑥𝑛 ≤ log σ𝑖 exp(𝑥𝑖) ≤ max 𝑥1, … , 𝑥𝑛 + log 𝑛



Soft Value Iteration

• Initialize values

• Repeat until convergence:
• Solve for Q
• Solve for V

Soft Maximum





• Maximum Likelihood Estimation

• Find reward function that maximizes the log likelihood of 
the demonstration trajectories:

Another way to look at MaxEnt IRL

𝑃 𝜏 =
𝑒𝑅𝑤(𝜏)

𝑍
𝑍 = න 𝑒𝑅𝑤(𝜏)𝑑𝜏

max
𝜃

1

𝑁
෍

𝜏∈𝐷

𝑅𝑤 𝜏 − log 𝑍



• Estimate Z with a finite set of trajectories 𝑍𝜏.

• Loop:
• Update parameters 𝑤 so demonstrations have higher reward 

than trajectories in 𝑍𝜏.

• Update 𝑍𝜏

How to avoid fully solving MDP

𝑍 = න 𝑒𝑅𝑤(𝜏)𝑑𝜏max
𝜃

1

𝑁
෍

𝜏∈𝐷

𝑅𝑤 𝜏 − log 𝑍



How to make this more tractable

𝑃 𝜏 =
𝑒𝑅𝑤(𝜏)

𝑍
Uniform sampling to 
approximate Z.

Noisy perturbations of 
demonstrations to 
approximate Z

Use current policy to approximate Z. 
Alternate between a few steps of reward 
updates and a few steps of policy updates.



Finn et al. “Guided Cost Learning.” 2016



GANs (Generative Adversarial Networks)



GAIL (Generative Adversarial Imitation Learning)

Ho and Ermon, 2016



What if we don’t want just a single 
reward estimate?
• Can we get a samples from the full Bayesian posterior?



Bayesian Inverse Reinforcement Learning 
(Ramachandran and Amir 2007)

• Assume demonstrator is Boltzmann rational
• Demonstrator follows a softmax policy with inverse temperature c

How much reward will I expect to see if I take action 
a in state s and act optimally thereafter.



Bayesian Inverse Reinforcement Learning 
(Ramachandran and Amir 2007)

• Assume demonstrator is Boltzmann rational
• Demonstrator follows a softmax policy with inverse temperature 𝛽

Expert 
action

Alternative 
action

𝑠



Bayesian Inverse Reinforcement Learning 
(Ramachandran and Amir 2007)

• Assume demonstrator is Boltzmann rational
• Demonstrator follows a softmax policy with inverse temperature 𝛽

• Perform Bayesian inference (MCMC) to sample from posterior 
distribution

R

P
(R

|D
)

𝛽



Applications of Bayesian IRL 

• Active Learning

• Uncertainty Estimation

• Demonstration Sufficiency



Autonomous Assessment of
Demonstration Sufficiency via Bayesian

Inverse Reinforcement Learning

Tu (Alina) Trinh

University of 
California, Berkeley

Daniel S. Brown

University of Utah

Haoyu Chen

University of Utah
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Learning From Demonstration (LfD)

50



• Have I provided enough 
demonstrations?

• Are my demonstrations 
informative enough?

• Should I just supervise the 
robot?
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• Have I received enough 
demonstrations?

• Are these demonstrations 
informative enough?
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Determining Demonstration Sufficiency
Demonstration Insufficiency
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Determining Demonstration Sufficiency
Demonstration Insufficiency

Uninformative Demos
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Determining Demonstration Sufficiency
Demonstration Insufficiency
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Uninformative Demos



Determining Demonstration Sufficiency
Demonstration Insufficiency

More demos
needed
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Uninformative Demos



Determining Demonstration Sufficiency
Demonstration Sufficiency
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Determining Demonstration Sufficiency
Demonstration Sufficiency

Demos
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Determining Demonstration Sufficiency
Demonstration Sufficiency

Demos
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Determining Demonstration Sufficiency
Demonstration Sufficiency

Demos Learned policy
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• Have I received enough 
demonstrations?

• Are these demonstrations 
informative enough?

• What is the reward 
function?

• How do I measure policy 
“goodness”?

61



Estimating the Reward

Bayesian
IRL
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Estimating the Reward

demonstrations

63

Bayesian
IRL



Estimating the Reward

demonstrations
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Bayesian
IRL



Estimating the Reward

estimated
reward function

demonstrations
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Bayesian
IRL



Measuring Policy Goodness

• Normalized expected value difference (nEVD)

• Puts policy regret in interpretable percentage form
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Measuring Policy Goodness

• Normalized expected value difference (nEVD)

• Puts policy regret in interpretable percentage form

• We only have an estimate of R*, so…
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Measuring Policy Goodness

demonstrations
estimated

reward function

68

Bayesian
IRL



Measuring Policy Goodness

α worst-case bound on nEVD

demonstrations
estimated

reward function
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Bayesian
IRL



Measuring Policy Goodness

demonstration
sufficiency!

α worst-case bound on nEVD

demonstrations
estimated

reward function

70

Bayesian
IRL



Comparing With Theoretical Bounds

nEVD 
Threshold

Ours Abbeel and
Ng ‘04

Syed and 
Schapire ‘07

0.1 17 1,600,000 3,700,000

0.3 16 180,000 410,000

0.5 15 65,000 150,000

How many demonstrations is enough for a simple gridworld?

[1] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. ICML 2004.
[2] Umar Syed and Robert E Schapire. A game-theoretic approach to apprenticeship learning. NeurIPS 2007.

71

based on Chernoff-Hoeffding bound



Baselines and Environments

• Convergence heuristic

• Validation set heuristic
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Baselines and Environments

• Convergence heuristic

• Validation set heuristic
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Simulation Results

on average, 5% more
accurate than baselines

on average, 25% more sample
efficient than baselines74



User Study

75

R*



User Study

76

Correct?

Sufficient!



User Study Results
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User Study Results

robust against suboptimal demonstrations: ~12%
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Bayesian
IRL

Future Work
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Bayesian
IRL

Future Work
Increase BIRL efficiency
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Bayesian
IRL

Future Work
Increase BIRL efficiency

Calibrate to 
demonstrator’s 

optimality

81



Autonomous Assessment of
Demonstration Sufficiency via Bayesian

Inverse Reinforcement Learning

Demos Learned policy



What if I want to learn rewards from 
more than demonstrations?



How do we learn from diverse types of 
feedback of unknown quality?

Language



Unifying Human Feedback Types

𝐶 = {𝑐1, … . 𝑐𝑛} 𝑟: 𝐶 → ℝ

Boltzmann Rational Choice Model

ℙ 𝑐𝑖|𝑟 =
exp(𝜷𝑟(𝑐𝑖))

σ𝐶 exp( 𝜷𝑟(𝑐′))

Type equation here.

𝜷 → 𝟎 random (non-rational) choices

𝜷 → ∞ deterministic (perfectly-rational) choices

Jeon et al. "Reward-rational (implicit) choice: A unifying formalism for reward learning." NeurIPS 2020.



Trajectory Comparisons (Pairwise Prefs)

𝐶 = {𝑐1, … . 𝑐𝑛} 𝑟: 𝐶 → ℝ

Boltzmann Rational Choice Model

ℙ 𝑐𝑖|𝑟 =
exp(𝛽𝑟(𝑐𝑖))

σ𝐶 exp( 𝛽𝑟(𝑐′))

Type equation here.
𝜏1

𝜏2

𝐶 = {𝜏1, 𝜏2} 

ℙ 𝜏𝑖 𝑟 =
exp(𝛽𝑟(𝜏𝑖))

exp(𝛽𝑟(𝜏𝑖)) + exp(𝛽𝑟(𝜏𝑖)) 



Demonstrations

𝐶 = {𝑐1, … . 𝑐𝑛} 𝑟: 𝐶 → ℝ

Boltzmann Rational Choice Model

ℙ 𝑐𝑖|𝑟 =
exp(𝛽𝑟(𝑐𝑖))

σ𝐶 exp( 𝛽𝑟(𝑐′))

Type equation here.

𝐶 = {All Possible Trajectories } 

ℙ 𝜏 𝑟 =
exp(𝛽𝑟(𝜏))

σΤ exp( 𝛽𝑟(𝜏′))



E-Stops

𝐶 = {𝑐1, … . 𝑐𝑛} 𝑟: 𝐶 → ℝ

Boltzmann Rational Choice Model

ℙ 𝑐𝑖|𝑟 =
exp(𝛽𝑟(𝑐𝑖))

σ𝐶 exp( 𝛽𝑟(𝑐′))

Type equation here.

𝐶 = {𝜏:1, … , 𝜏:𝑇} 

ℙ 𝜏:𝑖 𝑟 =
exp(𝛽𝑟(𝜏:𝑖))

σ1
𝑇 exp 𝛽𝑟(𝜏:𝑗))



Reward Learning from Human Feedback

• Assume demonstrator is Boltzmann rational
• Demonstrator follows a softmax policy with inverse temperature 𝛽

• Perform Bayesian inference (MCMC) to sample from posterior 
distribution

R

P
(R

|D
)

𝐶 = {𝑐1, … . 𝑐𝑛} 𝑟: 𝐶 → ℝ

ℙ 𝑐𝑖|𝑟 =
exp(𝜷𝑟(𝑐𝑖))

σ𝐶 exp( 𝜷𝑟(𝑐′))



RL from Human Feedback (RLHF)



RL from Human Preferences

https://arxiv.org/abs/1706.03741



Why would you want to learn a reward 
from ranked examples?



Inverse Reinforcement Learning

Prior approaches …

1. Typically couldn’t do much better than 
the demonstrator.

We find a reward function that explains 
the ranking, allowing for extrapolation.

2. Were hard to scale to complex 
problems.

Brown et al. "Extrapolating Beyond Suboptimal Demonstrations via IRL from Observations." ICML 2019

Pre-Ranked 
Demonstrations

95
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Inverse Reinforcement Learning

Prior approaches …

1. Typically couldn’t do much better than 
the demonstrator.

Find a reward function that explains the 
ranking, allowing for extrapolation.

2. Were hard to scale to complex 
problems.

Reward learning becomes a supervised 
learning problem.

Pre-Ranked 
Demonstrations

Brown et al. "Extrapolating Beyond Suboptimal Demonstrations via IRL from Observations." ICML 2019



Trajectory-ranked Reward Extrapolation 
(T-REX)

≺ ⋯ ≺

Pre-ranked demonstrations

Reward 
Function

Brown et al. "Extrapolating Beyond Suboptimal Demonstrations via IRL from Observations." ICML 2019
98



Trajectory-ranked Reward Extrapolation 
(T-REX)

≺ ⋯ ≺

Pre-ranked demonstrations T-REX Policy

Brown et al. "Extrapolating Beyond Suboptimal Demonstrations via IRL from Observations." ICML 2019
99



Reward Function

𝑅𝜃: 𝑆 →  ℝ

100

Examples of S:

Current Robot Joint 
Angles and Velocities → 0.5 → −0.7



Reward Function

𝑅𝜃: 𝑆 →  ℝ

101

Examples of S:

Current Robot Joint 
Angles and Velocities → 0.5 → −0.7

Short
Sequence of

Images
→ 0.9 → −1.2



Trajectory-ranked Reward Extrapolation 
(T-REX) 

Bradley-Terry pairwise ranking loss

106



Trajectory-ranked Reward Extrapolation 
(T-REX) 

107

Logits

Minimize cross-entropy loss



Trajectory-ranked Reward Extrapolation 
(T-REX) 

108

Logits

Minimize cross-entropy loss

Given pre-ranked demos, reward learning can be 
formulated as a standard supervised learning task.



T-REX Policy Performance 

Brown et al. "Extrapolating Beyond Suboptimal Demonstrations via IRL from Observations." ICML 2019
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Reward Extrapolation

T-REX can extrapolate beyond the performance of the best demo

Brown et al. "Extrapolating Beyond Suboptimal Demonstrations via IRL from Observations." ICML 2019
110



Best demo (Score = 84) T-REX (Score = 520)

Uses only 12 ranked demonstrations

“Autonomous Driving” in Atari

111



Atari Breakout

112

Best of 12 
demos

GAIL (Ho and 
Ermon 2016)

T-REXBehavioral
Cloning



What if you don’t have explicit 
preference labels?

Learning from a learner [ICML’19]

Automatic preference label generation [CoRL’20]

113



Automatic Rankings via Noise Injection

• Assumption: Demonstrator is 
significantly better than a 
purely random policy.

• Provides automatic rankings 
as noise increases.

• Generates a large diverse set 
of ranked demonstrations

Brown et al. “Better-than-Demonstrator Imitation Learning via Automatically-Ranked Demonstrations." CoRL 2019



Disturbance-based Reward Extrapolation (D-
REX)

Brown et al. “Better-than-Demonstrator Imitation Learning via Automatically-Ranked Demonstrations." CoRL 2019

Behavioral 
Cloning



Disturbance-based Reward Extrapolation (D-
REX)

Automatic 
Rankings via 

Noise Injection

≺ ≺

𝜖 = 1.0 𝜖 = 0.2 𝜖 = 0.01

Behavioral 
Cloning



Disturbance-based Reward Extrapolation (D-
REX)

Automatic 
Rankings via 

Noise Injection

T-REX

Reward
Function

R(s)
≺ ≺

𝜖 = 1.0 𝜖 = 0.2 𝜖 = 0.01

Behavioral 
Cloning



Disturbance-based Reward Extrapolation (D-
REX)

Automatic 
Rankings via 

Noise Injection

T-REX
Policy 

Optimization

D-REX Policy

≺ ≺

𝜖 = 1.0 𝜖 = 0.2 𝜖 = 0.01

Behavioral 
Cloning



Experiments

D-REX consistently 
outperforms the best 
demonstration as well as 
outperforming BC and GAIL.

Brown et al. “Better-than-Demonstrator Imitation Learning via Automatically-Ranked Demonstrations." CoRL 2019



AI systems can efficiently infer human 
intent from suboptimal demonstrations.

121



a
T-REX only learns a maximum likelihood estimate 
of the reward function.

122

𝑅



Reward Hacking

• Overfit to spurious correlations
• No consideration of alternative hypotheses

123



a

𝑷(𝑹|𝑫)

124



Idea: Fast Bayesian Inference

CNN

Low-Dimensional Latent Space

125

Preference-Based 
Likelihood Function

≺

Brown et al. “Safe Imitation Learning via Fast Bayesian Reward Inference from Preferences." ICML 2020.



Next time: LLMs and ChatGPT
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