Inverse RL and
Reward Learning

Instructor: Daniel Brown

[Some slides adapted from Sergey Levine (CS 285) and Alina Vereshchaka (CSE4/510)]



Reward Learning
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Why not just imitate behavior?
(Behavioral Cloning)

What would the
human do?
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Human Intent Inference

o Warneken & Tomaseio



Inverse Reinforcement Learning

° Given
o  MDP without a reward function

- Demonstrations from an optimal policy "

« Recover the reward function R that makes 7™ optimal



Imitation Learning

Inverse Reinforcement

Behavioral Cloning Learning
SR>
A
* Answers the “How?” question * Answers the “Why?” question
* Mimic the demonstrator * Explain the demonstrator’s behavior
* Learn mapping from states to * Learn a reward function capturing
actions the demonstrator’s intent
» Computationally efficient * Can require lots of data and compute
* Compounding errors * Better generalization. Can recover

from arbitrary states



IRL Example: Teaching a robot to navigate
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Toy version




What is the reward?
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Inverse Reinforcement Learning Formalism

e Given
o MDP without a reward function
o Demonstrations from an optimal policy *

e Recover a reward function R that makes 7™ optimal

e Ill-Posed Problem

o Infinite number of reward functions that can make 7" optimal
m  Trivial all zero reward
m Constant reward

m aR + ¢ (positive scaling a>0, and affine shifts)



Simpler problem: What if you know the policy?



How would you do this more generally?



Basic IRL Algorithm

o Start with demonstrations, D

o Guess initial reward function R,
° R\ — RO

o Loop:

- Solve for optimal policy 73
o Compare D and 5

- Update R to try and make D and 7§ more similar



Feature count matching

 Assume the reward function is a linear combination of features:
L T
R(s) = w" ¢(s)

* Value function becomes linear combination of (discounted)
feature expectations:

Ve = E; Z’th(st)
| t=0

Abbeel and Ng, “Apprenticeship learning via inverse reinforcement learning.” ICML, 2004.
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Feature count matching

 Assume the reward function is a linear combination of features:
L T
R(s) = w" ¢(s)

* Value function becomes linear combination of (discounted)
feature expectations:

Vi = WiE: | Y 2'o(se)| =wip,
 t=0 _

Abbeel and Ng, “Apprenticeship learning via inverse reinforcement learning.” ICML, 2004.



Inverse reinforcement learning: feature

matching
(Abbeel and Ng 2004, Syed and Schapire 2007)

o |f ||W||1 < 1’ then ‘wTy‘ < ’@HIHUHOO

" TTrobot

WT(/"LW* o /J’Trrobot)

H/"Lﬂ-* o /"Lﬂ-robotHoo

[

* If feature expectations match, then expected returns are identical.

e |dea: Can we update the reward guess R so the feature counts get
closer?

Abbeel and Ng, “Apprenticeship learning via inverse reinforcement learning.” ICML, 2004.



Problem: Many different policies can lead
to same expected feature counts



Maximum Entropy IRL e Rw(7)

(Ziebart et al. 2008) P(1) = A

* Collect M demonstrations D = {14, ..., Tj;}
* Initialize reward weights w R(s) = wl¢(s)
* Loop

* Solve for (soft) optimal policy m(als) via Value Iteration

* Solve for expected feature counts of m(a|s)
* Compute weight update w « w + a(up — u)



Soft Value Iteration

To (A¢|St) = ﬁQi{g’t (At,St)—VTf;f't(S t) Policy is a softmax policy.
' soft
V;;ft (St) — log Z EQWH (A¢,Se)

AeA

AN

Soft Maximum



Softmax is a Soft Maximum

e Assume b > a
* log(e® + eP) =

Ifa=>b
* log(e® + eP) =

* In general max{xq, x5, ..., X, } < log>;; exp(x;) < max{xy,...,x,} +logn



Soft Value Iteration

mTe (At|St) — € Tl‘(;. (At gt) Vi Dit(gt) Soft Maximum
> A
Vool (Sp) =log ) eme

soft (At,St) — R@ (StjAt) -+ Z PT (S"‘At:st) Vﬁﬂft (Sf)

TO mTe
S'esS

e Initialize values

* Repeat until convergence:
* Solve for Q
* Solve for V



Watch This: Scalable Cost-Function Learning
for Path Planning in Urban Environments

Markus Wulfmeier', Dominic Zeng Wang' and Ingmar Posner!

Sensory Input Initial States

Demonstration Samples

State Visiting
Frequencies

Y

Determine Loss &
Gradient

Expected State
Visiting Frequencies

Solve MDP

A 4

\ K

Reward Approximation

- ———— - —— -

Fig. 1: Schema for training neural networks in the Maximum
Entropy paradigm for IRL.




Another way to look at MaxEnt IRL

e Ry, (T)

P(t) = ~ 7 = j eRw(D g

e Maximum Likelihood Estimation

* Find reward function that maximizes the log likelihood of
the demonstration trajectories:

max _Z R,(t) —logZ

TED



How to avoid fully solving MDP

1 — Rw (7)
mgax Nz RW(T)—logZ Z—fe dt

TED

* Estimate Z with a finite set of trajectories Z;.
* Loop:

* Update parameters w so demonstrations have higher reward
than trajectories in Z;.

« Update Z;



How to make this more tractable

Relative Entropy Inverse Reinforcement Learning

Abdeslam Boularias Jens Kober Jan Peters
Max-Planck Institute for Intelligent Systems
72076 Tiibingen, Germany
{abdeslam.boularias, jens.kober, jan.peters}@tuebingen.mpg.de

Learning Objective Functions for Manipulation

Mrinal Kalakrishnan®, Peter Pastor®, Ludovic Righetri*T, and Stefan Schaal*f
kalakrisBusc.edu, pastorsalusc.edu, ludovic.righetti@al3.epfl.ch, sschaalBusc.edu
*CLMC Lab, University of Southern California, Los Angeles CA 90089
fMax Planck Institute for Intelligent Systems, Tiibingen, Germany 72076

Guided Cost Learning: Deep Inverse Optimal Control via Policy Optimization

Chelsea Finn CBFINN @EECS.BERKELEY.EDU
Sergey Levine SVLEVINE@EECS.BERKELEY.EDU
Pieter Abbeel PABBEEL@EECS.BERKELEY.EDU

University of California, Berkeley, Berkeley, CA 94709 USA

e Ry, (T)

P(t) = Z

Uniform sampling to
approximate Z.

Noisy perturbations of
demonstrations to
approximate Z

Use current policy to approximate Z.
Alternate between a few steps of reward
updates and a few steps of policy updates.



Finn et al. “Guided Cost Learning.” 2016
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GANs (Generative Adversarial Networks)

Training set V Discriminator

/ -, N\ Real
Random % — I — {Fa ke

Generator 1 /Fake image




GAIL (Generative Adversarial Imitation Learning)

Expert policy Y
_ TE TDE--
i V Agent = |
Training set / N Discriminator gen :
- — mg(als) ( ? :
Random a2 I LFake s —" |
— G State & Action :
State |
Generator Fake image : ________________________ :

Cost function

Ho and Ermon, 2016



What if we don’t want just a single
reward estimate?

* Can we get a samples from the full Bayesian posterior?

P(R|D)x P(D|R)P(R)



Bayesian Inverse Reinforcement Learning
(Ramachandran and Amir 2007)

e Assume demonstrator is Boltzmann rational

* Demonstrator follows a softmax policy with.i perature c
e Q i (S Y a Y R)

P(D|R) =

I S e 4 €PQ7G0.R)

(s,a)ED

(

\_

Q" (s,a,R) =

How much reward will | expect to see if | take action
a in state s and act optimally thereafter.

~N

J




Bayesian Inverse Reinforcement Learning
(Ramachandran and Amir 2007)

* Assume demonstrator is Boltzmann rational
* Demonstrator follows a softmax policy with inverse temperature 8

( BQ*(s;a,R) )
e
P(DIR) = ||
BR*(s,b,R)
(s,a)ED \ZbeA €

Y,
Expert ,_@ - - Alternative
action action

eQ" (s, — R)
P — —
((87 )‘R) €Q*(S,‘_aR) —+ GQ*(Sv"'?R)




Bayesian Inverse Reinforcement Learning
(Ramachandran and Amir 2007)

e Assume demonstrator is Boltzmann rational

* Demonstrator follows a softmax policy with inverse temperature 8

e BQ i (S ) a ? R)
D‘R H Z ecQ*(s,b,R)
(s,a)eD beA
* Perform Bayesian inference (MCMC) to sample from posterior
distribution Y ~

P(R|D)x P(D|R)P(R)

P(R|D)




Applications of Bayesian IRL

 Active Learning
* Uncertainty Estimation
* Demonstration Sufficiency
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Autonomous Assessment of
Demonstration Sufficiency via Bayesian
Inverse Reinforcement Learning

Tu (Alina) Trinh Haoyu Chen Daniel S. Brown

University of University of Utah ~ University of Utah
California, Berkeley






Learning From Demonstration (LfD)
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a )

Have I provided enough
demonstrations?

* Are my demonstrations
informative enough?

* Should I just supervise the
robot?




~ | N
* Have I received enough

demonstrations?

e Are these demonstrations
informative enough?

\.




Determining Demonstration Sufficiency

Demonstration Insufficiency



Determining Demonstration Sufficiency

Demonstration Insufficiency

e
t B t

Uninformative Demos



Determining Demonstration Sufficiency

Demonstration Insufficiency

Am I able to learn a
policy that performs
within 5% of the expert
with high confidence?

= =»

Il | =
4 4 @
Uninformative Demos @D@

55



Determining Demonstration Sufficiency

Demonstration Insufficiency

Am I able to learn a
policy that performs
within 5% of the expert
with high confidence?

= =»

Il | =
4 4 @
Uninformative Demos @D@

More demos
needed

56



Determining Demonstration Sufficiency

Demonstration Sufficiency



Determining Demonstration Sufficiency

Demonstration Sufficiency

n |
@4—

I |
A 4

Demos



Determining Demonstration Sufficiency

Demonstration Sufficiency

Am I able to learn a
policy that performs
within 5% of the expert
with high confidence?
YES.

59



Determining Demonstration Sufficiency

Demonstration Sufficiency

Am I able to learn a
policy that performs
within 5% of the expert
with high confidence?

o =) l_.@q

i |
f Q% Learned policy

60




( Have I received enough
demonstrations?

e Are these demonstrations
informative enough?

* What is the reward
function?

* How do I measure policy

K"goodness”? /




Estimating the Reward

Bayesian
IRL

62



Estimating the Reward

(s,a) € D

demonstrations

—

Bayesian
IRL
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Estimating the Reward

(s,a) € D

demonstrations

P(R|D)  P(D|R)

—

QBQR(S a)

H D pen €7ORED)

(s,a)eD

Bayesian
IRL

64



Estimating the Reward

(s,a) € D

demonstrations

P(R|D)  P(D|R)

—

QBQR(S a)

(s,a)eD

Bayesian
IRL

H D pen €7ORED)

—

Rrobot

estimated
reward function



Measuring Policy Goodness

* Normalized expected value difference (nEVD)
VE* L Vgiobot
VE)J* _ Vg:and

NEV D(Tiobot, RY) =

* Puts policy regret in interpretable percentage form



Measuring Policy Goodness

* Normalized expected value difference (nEVD)
VE* L Vgiobot
VE)J* _ Vg:and

NEV D(Tiobot, RY) =

* Puts policy regret in interpretable percentage form
* We only have an estimate of R¥, so...



Measuring Policy Goodness

P(R|D) x P(D|R) = ] i
X — —
(s,a)eD ZbeA eﬁQR( o

R
( ? ) . :D Y - :> estimated
demonstrations IRL reward function

} !

Ry,..., R, Tlrobot

68



Measuring Policy Goodness

P(R|D) x P(D|R) = ] i
X — —
(s,a)eD ZbeA eﬁQR( o

R
( ? ) . :D Y - :> estimated
demonstrations IRL reward function

} !

Ry,..., R, Tlrobot
Uq (ﬂEVD(?TrObOt? R))

a worst-case bound on nEVD 69



Measuring Policy Goodness

(s,a) € D

demonstrations

P(R|D)  P(D|R) = -
(S’a]n)IED ZE)EA QBQR( ab)

—

demonstration
sufficiency!

oBQk(5,0)

Bayesian
IRL

!

—

Rrobat

estimated
reward function

!

Tlrobot

"4

E > U, (nEVD(Wrobot? R))

o worst-case bound on nEVD 70



Comparing With Theoretical Bounds

How many demonstrations is enough for a simple gridworld?

nEVD Abbeel and Syed and
Threshold Ng ‘04 Schapire ‘07
0.1 17

: 1,600,000 3,700,000
0.3 16 180,000 410,000
0.5 15 65,000 150,000

Y
based on Chernoff-Hoetfding bound

[1] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. ICML 2004.
[2] Umar Syed and Robert E Schapire. A game-theoretic approach to apprenticeship learning. NeurIPS 2007.

71



Baselines and Environments

* Convergence heuristic
e Validation set heuristic



Baselines and Environments

* Convergence heuristic
e Validation set heuristic

Gridworld Driving Lunar lander

i(:

g

Lavaworld

73



F1 Score

F1 Score

Simulation Results

1.000

0.990

0.980

0.970

0.960

0.950

1.000

0.900

0.800

0.700

Gridworld Driving

Lunar Lander Lavaworld

on average, 5% more
accurate than baselines

Pct. of States Needed

Num. Demos Needed

B Ours B Convergence M Valid. Set

1.000
0.750
0.500

0.250

0.000
Gridworld Driving

25.000
20.000
15.000
10.000

5.000

0.000
Lunar Lander Lavaworld

on average, 25% more sample
efficient than baselines.



User Study
0O



User Study
<



User Evaluation (out of 5)

User Study Results

Ours Convergence Valid. Set

Pct. of States Needed

0.800

0.600

0.400

0.200

0.000

Ours

Convergence

Valid. Set
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User Evaluation (out of 5)

User Study Results

Ours

0.800

0.600

0.400

0.200

Pct. of States Needed

0.000
Convergence Valid. Set Ours Convergence

robust against suboptimal demonstrations: ~12%

Valid. Set

78



Future Work

P(R|D) x P(D|R) = ]]

(s,a) € D )

BQn(5.0)

*(s,b
A e PR

IRL

Bavesian
Y ‘ Rrobat

!

E > UV,

!

- R, TMrobot

RN /

(NEV D(Tobot, R))
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Future Work

P(R|D) x P(D|R) = ]]

(s,a) € D mws)

BRn(5,2)

*(s,b
e PIRCD

IRL

Bavesian
Y ‘ Rrobat

!

E > UV,

!

- R, TMrobot

RN V4

(NEV D(Tobot, R))
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Future Work

P(R|D) x P(D|R) = ]]

(s,a) € D )

BRn(5,2)

*(s,b
e PIRCD

IRL

Bavyesian
Y ‘ Rrobat

!

E > UV,

!

- R, TMrobot

RN V4

(NEV D(Tobot, R))
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% @Yl e Compati U ROBOTICS CENTER
X BAIR A I e ) THE UNIVERSITY OF UTAH

LIGENCE RESEARCH

Autonomous Assessment of
Demonstration Sufficiency via Bayesian
Inverse Reinforcement Learning

=
[Cwir]

Am [ able to learn a
policy that performs
within 5% of the expert
with high confidence?

Demos f @% Learned policy



What if I want to learn rewards from
more than demonstrations?

Reward-rational (implicit) choice:
A unifying formalism for reward learning

Hong Jun Jeon*!, Smitha Milli*?, Anca Dragan®
hjjeon@stanford.edu, smilli@berkeley.edu, anca@berkeley.edu
"Equal contribution,

!Stanford University,

*University of California, Berkeley



How do we learn from diverse types of
feedback of unknown quality?

o
L/

Language



Unitying Human Feedback Types

/ Boltzmann Rational Choice Model\
C ={cq,...c,} 1:C->R

 exp(Br(c)
Pl = S e (Br(e))

N /

random (non-rational) choices

deterministic (pertectly-rational) choices

Jeon et al. "Reward-rational (implicit) choice: A unifying formalism for reward learning." NeurlPS 2020.



Trajectory Comparisons (Pairwise Prets)

/ Boltzmann Rational Choice Model\

w
L) (7 7, C ={c,...c,} 1r:C-R
exp(pr(c;))

P(c;|r) = ,
Y ~exp( Br(c
R - OB
exp(fr(z;))
exp(Br(t;)) + exp(Br(T;))

P(t;|r) =




Demonstrations

C = {All Possible Trajectories }

exp(pr(z))

P = S ee(Br )

C ={cq,...cp,} 1:C—->R

p(e ) — PP

N 2cexp(Br(c))

/ Boltzmann Rational Choice Model\

/




E-Stops

N\ / Boltzmann Rational Choice Model\

o C={c,...c,} 1r:C-R
P = ST
C ={t4,..,T.7} \ /
exp(Br(t,;))

P(z|r) = ST exp Br(t.))



Reward Learning from Human Feedback

* Assume demonstrator is Boltzmann rational
* Demonstrator follows a softmax policy with inverse temperature 8

C ={cy,...cp,} 1r:C->NR

P(c;|r) =

exp(Br(ci))

2.cexp(fr(c))

* Perform Bayesian inference (MCMC) to sample from posterior

distribution

P(R|D)x P(D|R)P(R)

-

P(R|D)

1




RL from Human Feedback (RLHF)

HUMAN

< .............
PREDICTED REWARD PREDICTOR FEEDBACK
REWARD

OBSERVATION

RL ALGORITHM ENVIRONMENT

ACTION



RL from Human Preferences

o 9 Detler Mgt 5 Detter

https://arxiv.org/abs/1706.03741



Why would you want to learn a reward
from ranked examples?



Inverse Reinforcement Learning

Pre-Ranked

Prior approaches ... Demonstrations

1. Typically couldn’t do much better than
the demonstrator.

2. Were hard to scale to complex
problems. .

Brown et al. "Extrapolating Beyond Suboptimal Demonstrations via IRL from Observations." ICML 2019
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Inverse Reinforcement Learning

Pre-Ranked

Prior approaches ... Demonstrations

the-demonstrator

Find a reward function that explains the
ranking, allowing for extrapolation.

2. Were hard to scale to complex
problems. .

v c b

Brown et al. "Extrapolating Beyond Suboptimal Demonstrations via IRL from Observations." ICML 2019




Inverse Reinforcement Learning

Pre-Ranked

Prior approaches ... Demonstrations

the-demonstrator

Find a reward function that explains the
ranking, allowing for extrapolation.

22— \Were nard-to-scateto-complex
e il

Reward learning becomes a supervised
learning problem.

Brown et al. "Extrapolating Beyond Suboptimal Demonstrations via IRL from Observations." ICML 2019



Trajectory-ranked Reward Extrapolation
(T-REX)

Reward

Function

Pre-ranked demonstrations

98
Brown et al. "Extrapolating Beyond Suboptimal Demonstrations via IRL from Observations." ICML 2019



Trajectory-ranked Reward Extrapolation
(T-REX)

Pre-ranked demonstrations T-REX Policy

Brown et al. "Extrapolating Beyond Suboptimal Demonstrations via IRL from Observations." ICML 2019



Reward Function

Examples of S:

Current Robot Joint
Angles and Velocities

RQZS—> R

‘r(

— 0.5

- —0.7



Reward Function

RQZ S—-> R
Examples of S:
Current Robot Joint
Angles and Velocities ‘)——( — 0.5 ’\B\ - —0.7

Short
Sequence of
Images

101



Trajectory-ranked Reward Extrapolation

(T-REX)
(1)<[re < <7

S E

Bradley-Terry pairwise ranking loss eXp Z RQ(S)

r) — — SET;
©) T;J exp Z Rg(s) + exp Z Ro(s

SE’T SE’TJ 106




Irajectc

[ |

(T-REX

-L Softmax J
Si
J\S)i C

f Cross-Entropy

L Loss

tion

107



Trajectory-ranked Reward Extrapolation

(T-REX)
(1)<[r2 <+ <7

Given pre-ranked demos, reward learning can be
formulated as a standard supervised learning task.

— = )
Minimize cross-entropy loss exp Z R (s)
SCT;




T-REX Policy Performance

— == Best Demo Perf. Bl BCO

Bl GAIL Bl T-REX

Performance

Stage 1 Stage 2 Stage 3

109
Brown et al. "Extrapolating Beyond Suboptimal Demonstrations via IRL from Observations." ICML 2019



Reward Extrapolation

® Demonstrations ® Unseen Trajectories

Predicted Returns (normalized)

0 1000 2000 3000
Ground Truth Returns

T-REX can extrapolate beyond the performance of the best demo

110
Brown et al. "Extrapolating Beyond Suboptimal Demonstrations via IRL from Observations." ICML 2019



“Autonomous Driving” in Atari

Best demo (Score = 84) T-REX (Score = 520)

Uses only 12 ranked demonstrations

111



Atari Breakout

Behavioral

Best of 12 Cloning GAIL (Ho and

demos Ermon 2016)




What if you don’t have explicit
preference labels?

Learning from a learner [ICML19]

v v
T@'<7'j

Automatic preference label generation [CoRL 20]

Goal Goal v, ./Goal

,,1'(2 },',..\40
T - - R '
,",:,.o “/‘-.~'_.—'
/,_ '4 0—/
d'k-'l -

Goal

Start



Automatic Rankings via Noise Injection

* Assumption: Demonstrator is
significantly better than a 40-
purely random policy.

= 301 —— demos
. . . 5 bc
* Provides automatic rankings ©20{ -
as noise increases. 0.
* Generates a large diverse set 0] T ——
of ranked demonstrations 0.00 0.25 0.50 0.75 1.00

Epsilon-greedy noise

Brown et al. “Better-than-Demonstrator Imitation Learning via Automatically-Ranked Demonstrations." CoRL 2019



Disturbance-based Reward Extrapolation (D-
REX)

Behavioral
Cloning

e

-7
b
B

A
TBC

Brown et al. “Better-than-Demonstrator Imitation Learning via Automatically-Ranked Demonstrations." CoRL 2019



Disturbance-based Reward Extrapolation (D-
REX)

. Automatic

Behavioral » Ranki ,

Cloning z?n '”55 v.|a
Noise Injection




Disturbance-based Reward Extrapolation (D-
REX)

. Automatic

Behavioral » Ranki ,

Cloning z?n '”55 v.|a
Noise Injection

Reward

I:> Function

R(s)



Disturbance-based Reward Extrapolation (D-
REX)

. Automatic

Behavioral » Ranki ,

Cloning z?n '”55 v.|a
Noise Injection




Experiments

D-REX consistently
outperforms the best
demonstration as well as
outperforming BC and GAIL.

Brown et al. “Better-than-Demonstrator Imitation Learning via Automatically-Ranked Demonstrations." CoRL 2019



O Warneken & Tomaseio

Al systems can efficiently infer human
intent from suboptimal demonstrations.

121



T-REX only learns a maximum likelihood estimate
of the reward function.

122



Reward Hacking

oooooo
GECTOR 01

* Overfit to spurious correlations
* No consideration of alternative hypotheses






Idea: Fast Bayesian Inference

/ . . \ / Preference-Based \
Low-Dimensional Latent Space Likelihood Function

Brown et al. “Safe Imitation Learning via Fast Bayesian Reward Inference from Preferences." ICML 2020. '»



Next time: LLMs and ChatGPT

Prompts & Text Dataset

A4

Train Language Model

~N
Initial Language Model

ore)
s L0,
S 0707

Human Augmented
Text (Optional)

Prompts Dataset

Sample many prompts

f

Initial Language Model

. 4

2999

Train on

{sample, reward} pairs

Reward (Preference)
Model

0To

(:\\

Vg .v

text

(
P

Lorem ipsum dolor
sit amet, consecte
adipiscing elit. Aen
Donec quam felis
vulputate eget, arc
Nam quam nunc
eros faucibus tinci

luctus pulvinar, her

N

Human Scoring

Generated text

Outputs are ranked
(relative, ELO, etc.)
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