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Rough Taxonomy of RL Algorithms
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We’ve already seen model-based RL
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▪ More data efficient

▪ Increased performance just by increasing compute budget for 
search

▪ Learned dynamics are task independent
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Why use planning over model-free RL?
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Vision Model

Demo: https://worldmodels.github.io/ 

https://worldmodels.github.io/


Variational Autoencoders (VAEs)

▪ Autoencoders learn latent 
representations

▪ VAEs map input into a 
distribution over latent 
variables z

▪ Loss function is 
reconstruction plus KL 
divergence
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Memory Model
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Simple Controller



▪ Covariance matrix adaptation evolution strategy
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CMA-ES



Putting everything together



▪ https://worldmodels.github.io/ 
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Algorithm

https://worldmodels.github.io/
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PlaNet



Key Improvements over World Models:

• Uncertainty modeling (probabilistic latent states).

• End-to-end differentiable training.

• Better sample efficiency and planning accuracy.
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PlaNet



▪ Iteratively collects data and trains a latent dynamics model

▪ Models world as a Partially Observable MDP (POMDP)

▪ Goal: Find a policy that maximizes expected rewards

▪ Uses Model Predictive Control. No explicit policy network. 
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PlaNet



Model-Predictive Control (MPC)

▪ Use model to plan good 
looking sequence of 
actions.

▪ Take a step

▪ Update model of 
transitions

▪ Repeat
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Latent Dynamics Model
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Latent Dynamics Model
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Model-Based Planning via MPC
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Recurrent State Space Model



▪ Learns an encoder 𝑞 𝑠𝑡 𝑜<𝑡, 𝑎<𝑡)

▪ Learns a decoder 𝑝 𝑜𝑡 𝑠𝑡

▪ Learns a latent transition model 
𝑝(𝑠𝑡|𝑠𝑡−1, 𝑎𝑡−1)

▪ Trains similar to a VAE

▪ Reconstruction loss

▪ KL term
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Stochastic State Space Model



▪ Adds a deterministic RNN with hidden 
state ℎ𝑡 = 𝑓(ℎ𝑡−1, 𝑠𝑡−1, 𝑎𝑡−1)

▪ Learns an encoder 𝑞 𝑠𝑡 𝑜𝑡, ℎ𝑡)

▪ Learns a decoder 𝑝 𝑜𝑡 𝑠𝑡, ℎ𝑡

▪ Learns a latent transition model 
𝑝(𝑠𝑡|ℎ𝑡)

▪ Trains similar to a VAE

▪ Reward model trained similarly.
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Recurrent State Space Models



▪ Errors will compound, but previous math just 
encourages one-step predictions.

▪ To fix: Predict multiple states forward in latent 
space to encourage consistency between one-
step and multi-step predictions.

27

Latent Overshooting
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Evaluation: Deep Mind Control Suite
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Very Sample Efficient!

Can also train one PlaNet model to be able to solve all tasks!
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Dreamer
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▪ Actor Critic Architecture

▪ Learns value function to optimize Bellman error over imagined rewards

▪ Actor gradients are computed through the dynamics
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What makes Dreamer different?
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