#### Intro/Refresher on MDPs and Reinforcement Learning



Instructor: Daniel Brown

University of Utah

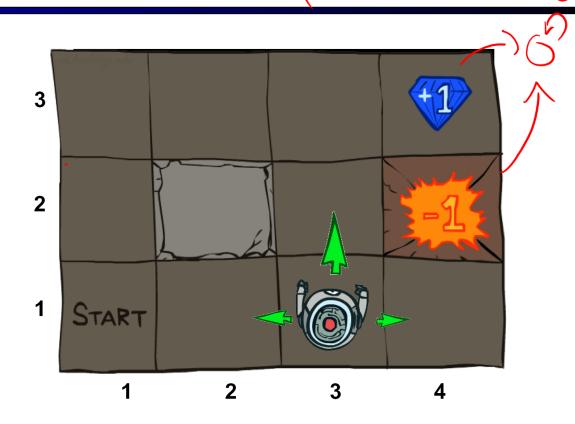
[Based on slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. http://ai.berkeley.edu.]

## Markov Decision Processes

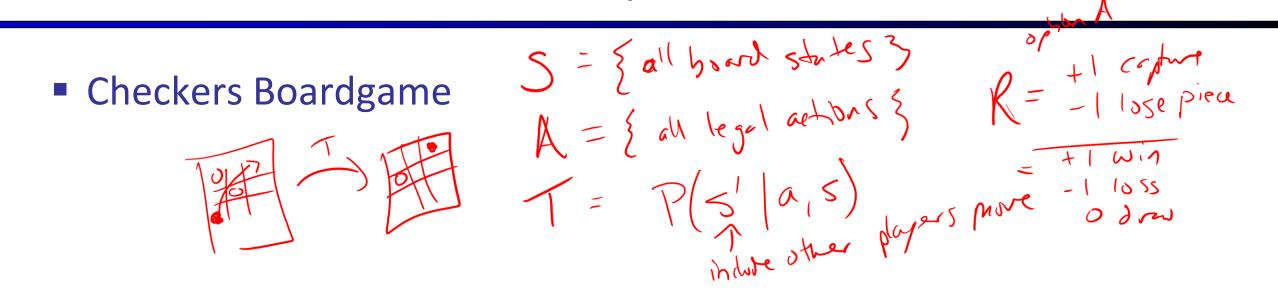
- An MDP is defined by:
  - A set of states s ∈ S
  - A set of actions  $a \in A$
  - A transition function T(s, a, s')
    - Probability that a from s leads to s', i.e., P(s' | s, a)
    - Also called the model or the dynamics
  - A reward function R(s, a, s')
    - Sometimes just R(s), R(s,a), or R(s')
  - A start state
  - Maybe a terminal state

in general

- MDPs are non-deterministic search problems
  - One way to solve them is with expectimax search
  - We'll have a new tool soon



## Other examples of MDPs



Medication treatment

## Other examples of MDPs

Self-driving car

Language Generation (ChatGPT)

## What is Markov about MDPs?

- "Markov" generally means that given the present state, the future and the past are independent. Conditional Independence!
- For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots S_0 = s_0)$$
  
=  
$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$



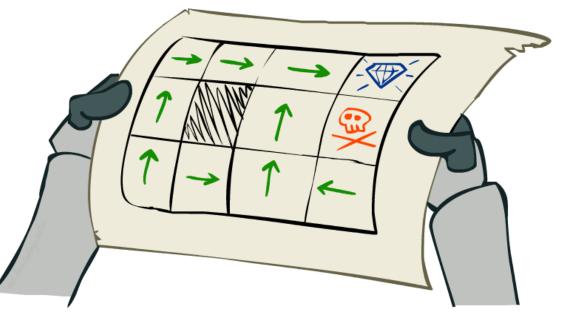
Andrey Markov (1856-1922)

 This is just like search, where the successor function could only depend on the current state (not the history)

| Types of Markov Models 2, 22 |                                  |                                                            |  |  |
|------------------------------|----------------------------------|------------------------------------------------------------|--|--|
| 5075, -152753 $5752753$      |                                  |                                                            |  |  |
|                              | System state is fully observable | System state is partially observable                       |  |  |
| System is autonomous         | Markov chain<br>Markov model     | Hidden Markov<br>model (HMM)                               |  |  |
| System is controlled         | Markov decision<br>process (MDP) | Partially observable<br>Markov decision<br>process (POMDP) |  |  |

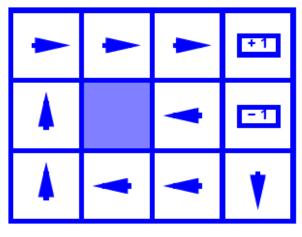
## Policies

- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal
- For MDPs, we want an optimal policy  $\pi^*: S \rightarrow A$ 
  - A policy π gives an action for each state
  - An optimal policy is one that maximizes expected utility if followed
  - An explicit policy defines a reflex agent



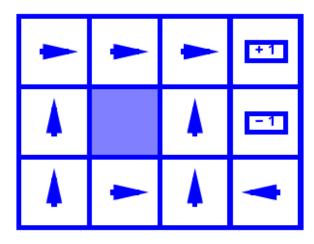
Optimal policy when R(s, a, s') = -0.03 for all non-terminals s

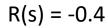
## **Optimal Policies**

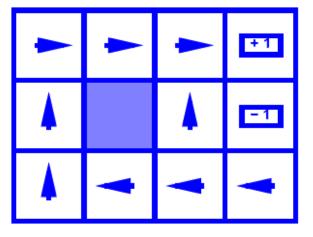


ν.

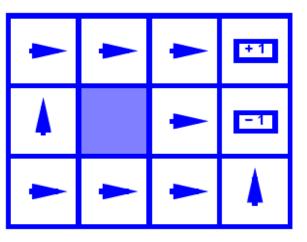
R(s) = -0.01







R(s) = -0.03



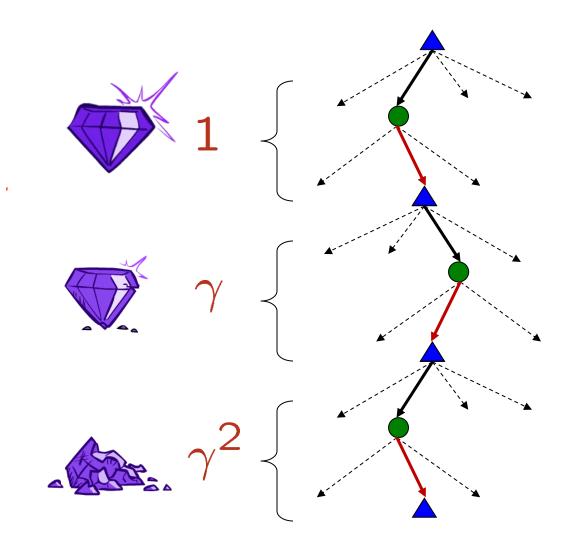
## Discounting

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially



## Discounting

- How to discount?
  - Each time we descend a level, we multiply in the discount once
- Why discount?
  - Sooner rewards probably do have higher utility than later rewards
  - Also helps our algorithms converge
- Example: discount of 0.5
  - U([1,2,3]) = 1\*1 + 0.5\*2 + 0.25\*3
  - U([1,2,3]) < U([3,2,1])</p>

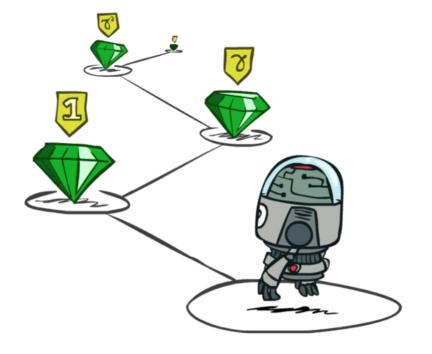


## **Stationary Preferences**

Theorem: if we assume stationary preferences:

$$[a_1, a_2, \ldots] \succ [b_1, b_2, \ldots]$$

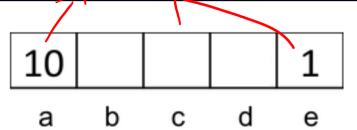
$$(r, a_1, a_2, \ldots] \succ [r, b_1, b_2, \ldots]$$



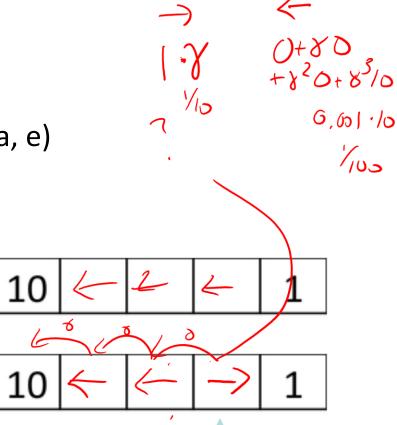
- Then: there are only two ways to define utilities
  - Additive utility:  $U([r_0, r_1, r_2, ...]) = r_0 + r_1 + r_2 + \cdots$
  - Discounted utility:  $U([r_0, r_1, r_2, \ldots]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots$







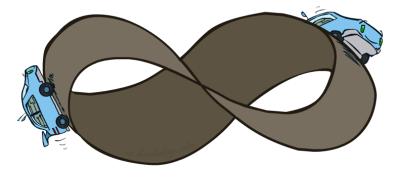
- Actions: East, West, and Exit (only available in exit states a, e)
- Transitions: deterministic
- Quiz 1: For  $\gamma = 1$ , what is the optimal policy?
- Quiz 2: For  $\gamma$  = 0.1, what is the optimal policy?



• Quiz 3: For which  $\gamma$  are West and East equally good when in state d?  $\gamma = 10\gamma^3$   $1 = 10\gamma^2$   $\gamma = \int_{10}^{10} \frac{1}{2}$ , 31C

## Infinite Utilities?!

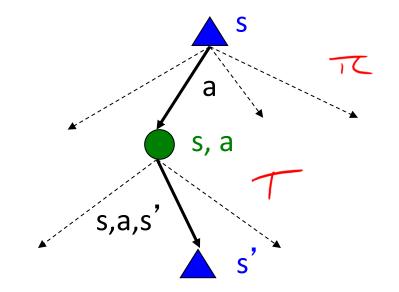
- Problem: What if the game lasts forever? Do we get infinite rewards?
- Solutions:
  - Finite horizon: (similar to depth-limited search)
    - Terminate episodes after a fixed T steps (e.g. life)
    - Gives nonstationary policies (π depends on time left)
  - Discounting: use  $0 < \gamma < 1$  Why?
    - $U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\max}/(1-\gamma)$
    - Smaller γ means smaller "horizon" shorter term focus
  - Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "overheated" for racing)



A= Zhow X = Rover + VRover + VRover + .... B= VZRmax 8t = VRmax + VRmax + V3Rmax .... A-B = Rmax 

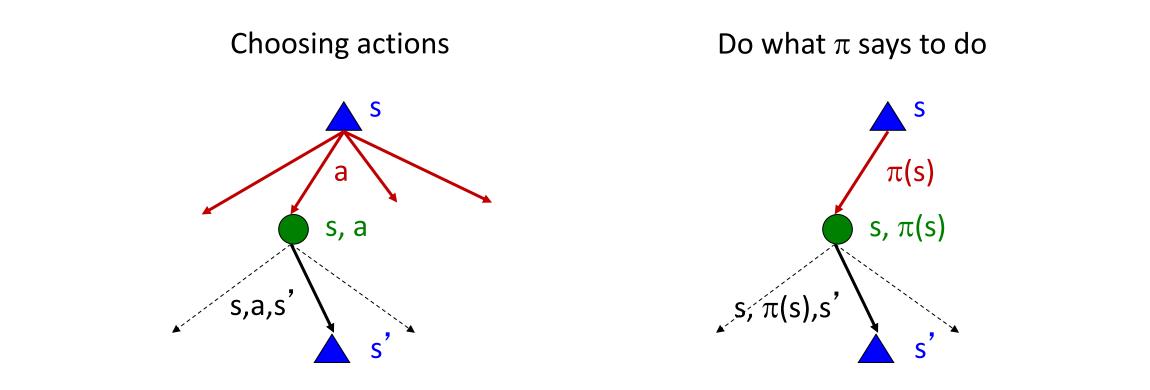
## **MDP** Notation

- Markov decision processes:
  - Set of states S
  - Start state s<sub>0</sub>
  - Set of actions A
  - Transitions P(s'|s,a) (or T(s,a,s'))
  - Rewards R(s,a,s') (and discount γ)



- Important MDP quantities:
  - Policy = Choice of action for each state
  - Utility = expected sum of (discounted) rewards = "expected return"

#### **Fixed Policies**

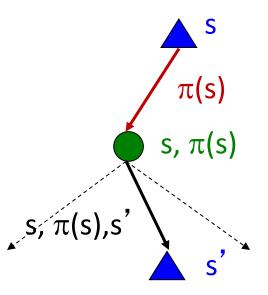


- If we fixed some policy  $\pi(s)$ , then the computation is simpler only one action per state
  - ... though the performance now depend on which policy we fixed

## Performance of a Fixed Policy

- Goal: compute the utility of a state s under a fixed (generally non-optimal) policy
- Define the utility of a state s, under a fixed policy π:
   V<sup>π</sup>(s) = expected total discounted rewards starting in s and following π
- Recursive relation (one-step look-ahead):

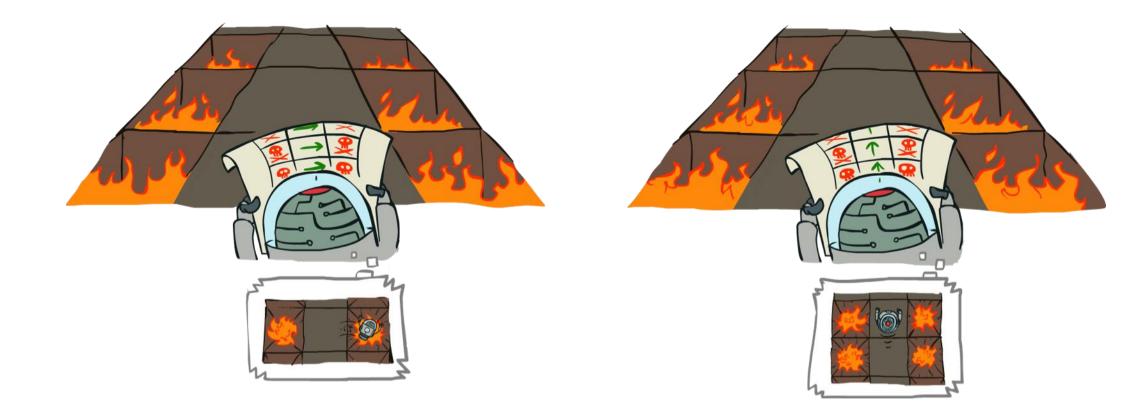
$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$
  
= 
$$\prod_{s'} \left[ R(s, \pi(s), s') + \gamma \sqrt{\tau}(s') \right]$$



## Example: Policy Evaluation

Always Go Right

Always Go Forward



#### **Example: Policy Evaluation**

750.9



#### Always Go Right

Always Go Forward

| -10.00 | 100.00     | -10.00 |
|--------|------------|--------|
| -10.00 | ▲<br>70.20 | -10.00 |
| -10.00 | ▲<br>48.74 | -10.00 |
| -10.00 | ▲<br>33.30 | -10.00 |

## **Policy Evaluation**

**π(s)** 

s, π(s)

s, π(s),s'

- How do we calculate the V's for a fixed policy  $\pi$ ?
- Idea 1: Turn recursive Bellman equations into updates

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

$$\bigvee_{s'}^{\pi}(s)$$

- Efficiency: O(S<sup>2</sup>) per iteration
- Idea 2: Just a linear system
  - Solve with Numpy or Matlab (or your favorite linear system solver)

# Policy Evaluation

- Idea 2: The Policy Evaluatoin Bellman equations are just a linear system  $V = \begin{pmatrix} V(5,) \\ \vdots \end{pmatrix}$ 
  - Solve with Numpy or Matlab (or your favorite linear system solver)

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

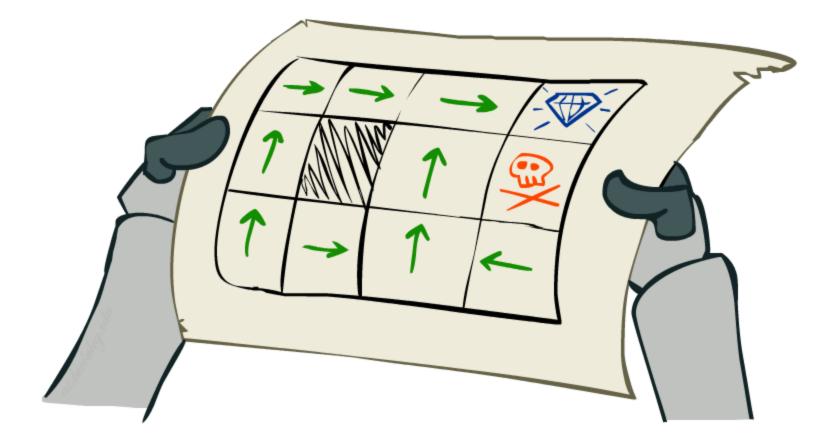
$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') R(s, \pi(s), s') + \gamma \sum_{s'} T(s, \pi(s), s') V^{\pi}(s')$$

$$V^{\pi}(s) = \bar{R}(s) + \gamma \sum_{s'} T(s, \pi(s), s') V^{\pi}(s')$$

$$T^{\pi}(\iota, j) = P(j|\iota, \pi)$$

$$V^{\pi}(s) = \bar{R} + \gamma T^{\pi} V^{\pi} \Longrightarrow V^{\pi} (\iota, j) = R = (I - \gamma T^{\pi})^{-1} \bar{R}$$

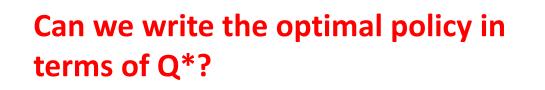
## Solving MDPs

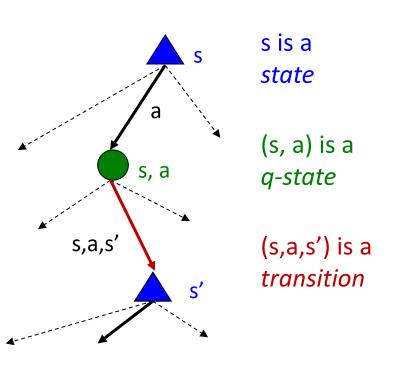


## **Optimal Quantities**

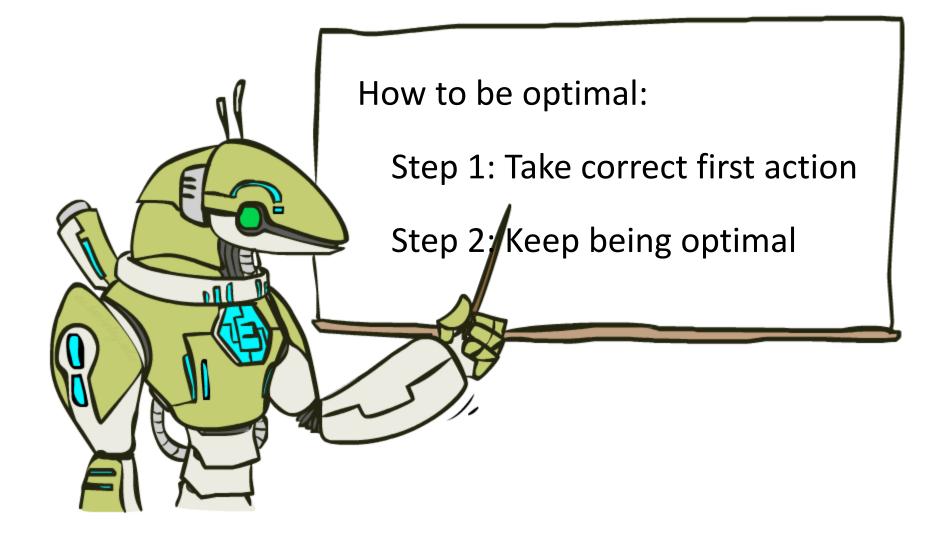
- The value (utility) of a state s:
  - V<sup>\*</sup>(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):
  - Q<sup>\*</sup>(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally
- The optimal policy:

 $\pi^*(s) = optimal action from state s$  $\pi^*(s) = \arg \max Q^*_a(s, a)$ 





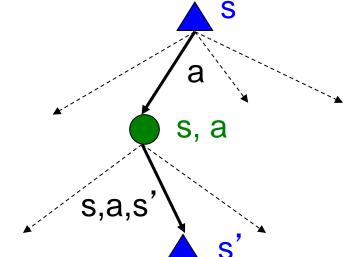
### The Bellman Equations



## **Bellman Equations**

- Fundamental operation: compute the (expectimax) value of a state
  - Expected utility under optimal action
  - Average sum of (discounted) rewards
  - This is just what expectimax computed!
- Recursive definition of value:

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$
$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V^{*}(s') \right]$$
$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V^{*}(s') \right]$$



### Aside: Different ways to write Bellman Eqns

What if R only depends on state and action? e.g. R(s,a,s') = R(s,a)

$$V^*(s) = \max_a Q^*(s,a)$$

$$Q^*(s,a) =$$

### Aside: Different ways to write Bellman Eqns

What if R only depends on state? e.g. R(s,a,s') = R(s)

$$V^*(s) = \max_a Q^*(s,a)$$

 $Q^{*}(s, a) =$ 

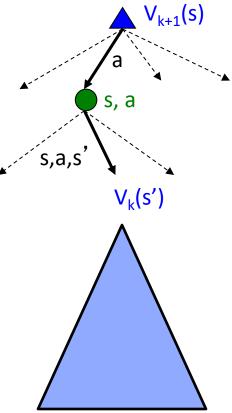
## Value Iteration

- Start with V<sub>0</sub>(s) = 0: no time steps left means an expected reward sum of zero
- Given vector of V<sub>k</sub>(s) values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V_k(s') \right]$$

**Bellman Update Equation** 

- Repeat until convergence
- Complexity of each iteration: O(S<sup>2</sup>A)
- Theorem: will converge to unique optimal values
  - Basic idea: approximations get refined towards optimal values
  - Policy may converge long before values do



| ○ ○ Gridworld Display     |      |      |      |  |
|---------------------------|------|------|------|--|
|                           |      | •    |      |  |
| 0.00                      | 0.00 | 0.00 | 0.00 |  |
| •                         |      | •    |      |  |
| 0.00                      |      | 0.00 | 0.00 |  |
| •                         | •    | •    |      |  |
| 0.00                      | 0.00 | 0.00 | 0.00 |  |
| VALUES AFTER O ITERATIONS |      |      |      |  |

| 0 0 | Gridworld Display         |      |        |       |  |
|-----|---------------------------|------|--------|-------|--|
|     | •                         | •    |        |       |  |
|     | 0.00                      | 0.00 | 0.00 → | 1.00  |  |
|     | <b>^</b>                  |      |        |       |  |
|     | 0.00                      |      | ∢ 0.00 | -1.00 |  |
|     | •                         | •    | •      |       |  |
|     | 0.00                      | 0.00 | 0.00   | 0.00  |  |
|     |                           |      |        | •     |  |
|     | VALUES AFTER 1 ITERATIONS |      |        |       |  |

| Gridworld Display         |           |           |       |
|---------------------------|-----------|-----------|-------|
| •                         | 0.00 >    | 0.72 )    | 1.00  |
| •<br>0.00                 |           | ▲<br>0.00 | -1.00 |
| •                         | •<br>0.00 | •<br>0.00 | 0.00  |
| VALUES AFTER 2 ITERATIONS |           |           |       |

k=3

| ○ ○ Gridworld Display |           |           |       |
|-----------------------|-----------|-----------|-------|
| 0.00 )                | 0.52 →    | 0.78 )    | 1.00  |
| ▲<br>0.00             |           | •<br>0.43 | -1.00 |
| •<br>0.00             | •<br>0.00 | •<br>0.00 | 0.00  |
| VALUE                 | S AFTER   | 3 ITERA   | FIONS |

k=4

| 0 0 | Gridworld Display |         |           |        |
|-----|-------------------|---------|-----------|--------|
|     | 0.37 ▸            | 0.66 )  | 0.83 )    | 1.00   |
|     | •<br>0.00         |         | •<br>0.51 | -1.00  |
|     | •<br>0.00         | 0.00 →  | •<br>0.31 | ∢ 0.00 |
|     | VALUE             | S AFTER | 4 ITERA   | FIONS  |

| 00                        | C C Gridworld Display |        |           |        |
|---------------------------|-----------------------|--------|-----------|--------|
|                           | 0.51 →                | 0.72 → | 0.84 )    | 1.00   |
|                           | •<br>0.27             |        | •<br>0.55 | -1.00  |
|                           | •<br>0.00             | 0.22 → | •<br>0.37 | ∢ 0.13 |
| VALUES AFTER 5 ITERATIONS |                       |        |           |        |

| 00                        | Gridworld Display |        |           |        |
|---------------------------|-------------------|--------|-----------|--------|
|                           | 0.59 →            | 0.73 → | 0.85 )    | 1.00   |
|                           | •<br>0.41         |        | •<br>0.57 | -1.00  |
|                           | •<br>0.21         | 0.31 → | •<br>0.43 | ∢ 0.19 |
| VALUES AFTER 6 ITERATIONS |                   |        |           |        |

| 0 0 | 0      | Gridworl | d Display |              |
|-----|--------|----------|-----------|--------------|
|     | 0.62 ) | 0.74 )   | 0.85 )    | 1.00         |
|     | •      |          | •         |              |
|     | 0.50   |          | 0.57      | -1.00        |
|     | •      |          | •         |              |
|     | 0.34   | 0.36 )   | 0.45      | ∢ 0.24       |
|     | VALUE  | S AFTER  | 7 ITERA   | <b>FIONS</b> |

| 0 0 | Gridworld Display |         |          |        |
|-----|-------------------|---------|----------|--------|
|     | 0.63 )            | 0.74 →  | 0.85 )   | 1.00   |
|     | <b>^</b>          |         | <b>^</b> |        |
|     | 0.53              |         | 0.57     | -1.00  |
|     | <b>^</b>          |         | •        |        |
|     | 0.42              | 0.39 →  | 0.46     | ∢ 0.26 |
|     | VALUE             | S AFTER | 8 ITERA  | FIONS  |

| 00                        | 0         | Gridworl | d Display |        |
|---------------------------|-----------|----------|-----------|--------|
|                           | 0.64 )    | 0.74 →   | 0.85 )    | 1.00   |
|                           | •<br>0.55 |          | ▲<br>0.57 | -1.00  |
|                           | ▲<br>0.46 | 0.40 →   | •<br>0.47 | ∢ 0.27 |
| VALUES AFTER 9 ITERATIONS |           |          |           |        |

| 00 | ○ ○ ○ Gridworld Display    |        |           |        |  |
|----|----------------------------|--------|-----------|--------|--|
|    | 0.64 )                     | 0.74 ▸ | 0.85 )    | 1.00   |  |
|    | ▲<br>0.56                  |        | •<br>0.57 | -1.00  |  |
|    | ▲<br>0.48                  | ∢ 0.41 | ▲<br>0.47 | ∢ 0.27 |  |
|    | VALUES AFTER 10 ITERATIONS |        |           |        |  |

| Gridworld Display          |           |        |           |        |
|----------------------------|-----------|--------|-----------|--------|
|                            | 0.64 →    | 0.74 → | 0.85 →    | 1.00   |
|                            | ▲<br>0.56 |        | •<br>0.57 | -1.00  |
|                            | ▲<br>0.48 | ∢ 0.42 | •<br>0.47 | ∢ 0.27 |
| VALUES AFTER 11 ITERATIONS |           |        |           |        |

| 00                         | Gridworld Display |        |           |        |  |
|----------------------------|-------------------|--------|-----------|--------|--|
|                            | 0.64 )            | 0.74 ▸ | 0.85 )    | 1.00   |  |
|                            | •<br>0.57         |        | •<br>0.57 | -1.00  |  |
|                            | ▲<br>0.49         | ∢ 0.42 | •<br>0.47 | ∢ 0.28 |  |
| VALUES AFTER 12 ITERATIONS |                   |        |           |        |  |

| Gridworld Display           |        |           |        |
|-----------------------------|--------|-----------|--------|
| 0.64 )                      | 0.74 → | 0.85 →    | 1.00   |
| •<br>0.57                   |        | •<br>0.57 | -1.00  |
| •<br>0.49                   | ∢ 0.43 | ▲<br>0.48 | ∢ 0.28 |
| VALUES AFTER 100 ITERATIONS |        |           |        |

### Value Iteration

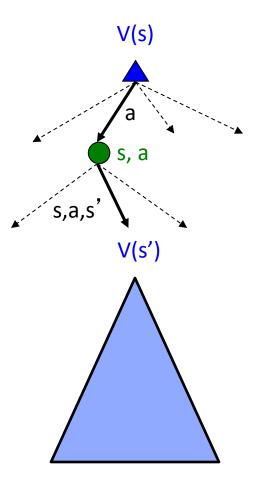
Bellman equations characterize the optimal values:

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V^{*}(s') \right]$$

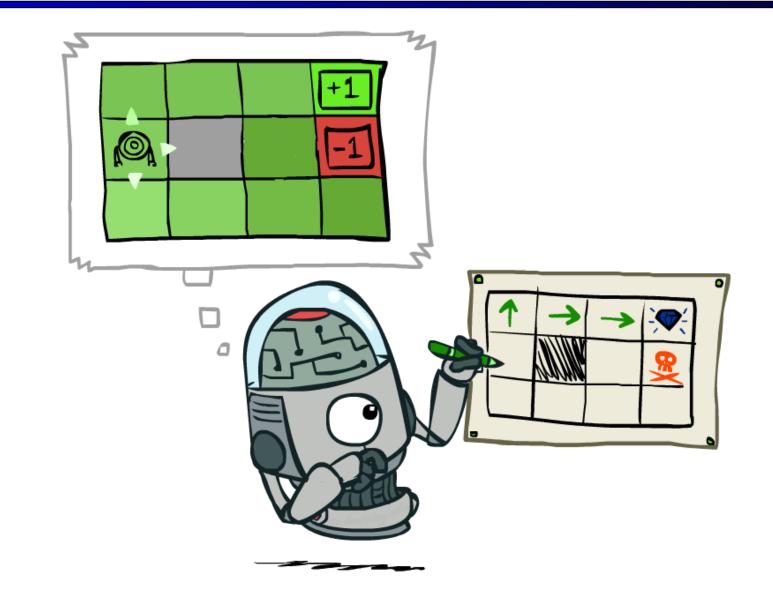
Value iteration computes them:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V_k(s') \right]$$

- Value iteration is just a fixed point solution method
  - ... though the V<sub>k</sub> vectors are also interpretable as time-limited values



### **Policy Extraction**



### **Computing Actions from Values**

- Let's imagine we have the optimal values V\*(s)
- How should we act?
  - It's not obvious!
- We need to do a mini-expectimax (one step)



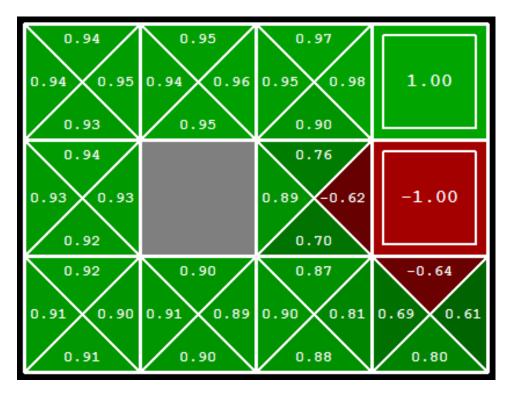
$$\pi^{*}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{*}(s')]$$

This is called policy extraction, since it gets the policy implied by the values

### **Computing Actions from Q-Values**

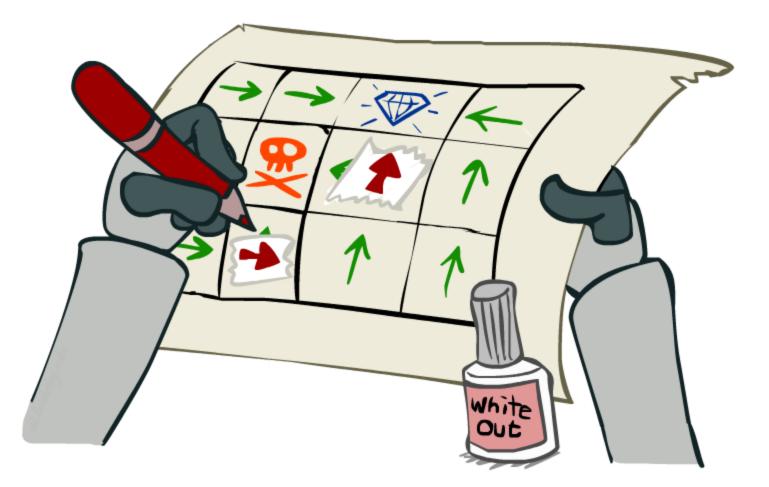
- Let's imagine we have the optimal q-values:
- How should we act?
  - Completely trivial to decide!

$$\pi^*(s) = \arg\max_a Q^*(s,a)$$



Important lesson: actions are easier to select from q-values than values!

### **Policy Iteration**



### Problems with Value Iteration

Value iteration repeats the Bellman updates:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V_k(s') \right]$$

Problem 1: It's slow – O(S<sup>2</sup>A) per iteration

- a s, a s, a s, a s, a s'
- Problem 2: The "max" at each state rarely changes
- Problem 3: The policy often converges long before the values

| 00 | ○ ○ ○ Gridworld Display    |        |           |        |  |
|----|----------------------------|--------|-----------|--------|--|
|    | 0.64 )                     | 0.74 ▸ | 0.85 )    | 1.00   |  |
|    | ▲<br>0.56                  |        | •<br>0.57 | -1.00  |  |
|    | ▲<br>0.48                  | ∢ 0.41 | ▲<br>0.47 | ∢ 0.27 |  |
|    | VALUES AFTER 10 ITERATIONS |        |           |        |  |

| Gridworld Display           |        |           |        |
|-----------------------------|--------|-----------|--------|
| 0.64 )                      | 0.74 → | 0.85 →    | 1.00   |
| •<br>0.57                   |        | •<br>0.57 | -1.00  |
| •<br>0.49                   | ∢ 0.43 | ▲<br>0.48 | ∢ 0.28 |
| VALUES AFTER 100 ITERATIONS |        |           |        |

# **Policy Iteration**

- Alternative approach for optimal values:
  - Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
  - Step 2: Policy improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values
  - Repeat steps until policy converges
- This is policy iteration
  - It's still optimal!
  - Can converge (much) faster under some conditions

### **Policy Iteration**

- Evaluation: For fixed current policy  $\pi$ , find values with policy evaluation:
  - Iterate until values converge:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[ R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

- Improvement: For fixed values, get a better policy using policy extraction
  - One-step look-ahead:

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

### Comparison

- Both value iteration and policy iteration compute the same thing (all optimal values)
- In value iteration:
  - Every iteration updates both the values and (implicitly) the policy
  - We don't track the policy, but taking the max over actions implicitly recomputes it
- In policy iteration:
  - We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
  - After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
  - The new policy will be better (or we're done)
- Both are dynamic programs for solving MDPs

### Summary: MDP Algorithms

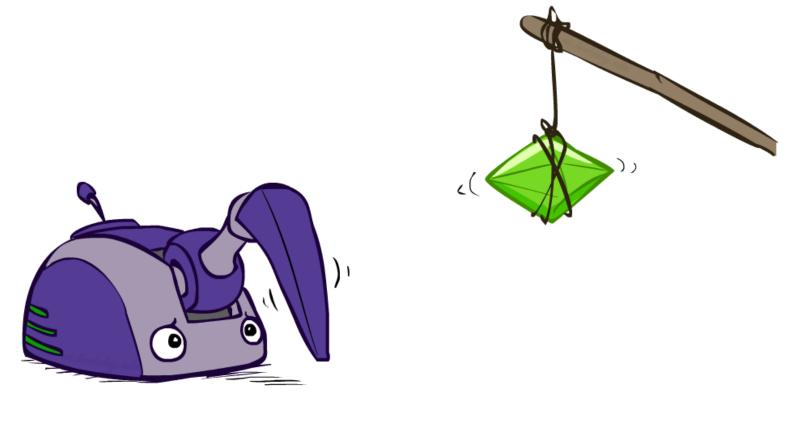
### So you want to....

- Compute optimal values: use value iteration or policy iteration
- Compute values for a particular policy: use policy evaluation
- Turn your values into a policy: use policy extraction (one-step lookahead)

### These all look the same!

- They basically are they are all variations of Bellman updates
- They all use one-step lookahead computations

### **Reinforcement Learning**





# What changes?

- Rather than planning, we now need to learn!
  - No access to underlying MDP, can't solve it with just computation
  - You needed to actually act to figure it out
  - Extension and generalization of Multi-Armed Bandits
- Important ideas in reinforcement learning that came up
  - Exploration: you have to try unknown actions to get information
  - Exploitation: eventually, you have to use what you know
  - Regret: even if you learn intelligently, you make mistakes
  - Sampling: because of chance, you have to try things repeatedly
  - Difficulty: learning can be much harder than solving a known MDP





Initial



A Learning Trial



After Learning [1K Trials]



Initial

[Kohl and Stone, ICRA 2004]



Training

[Kohl and Stone, ICRA 2004]

[Video: AIBO WALK – training]

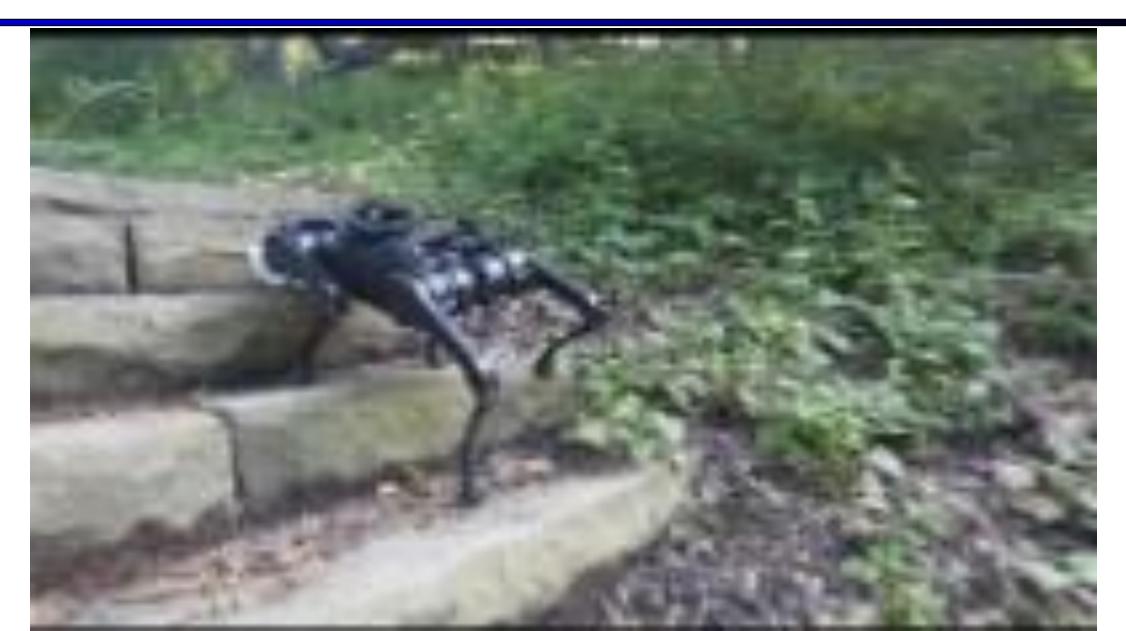


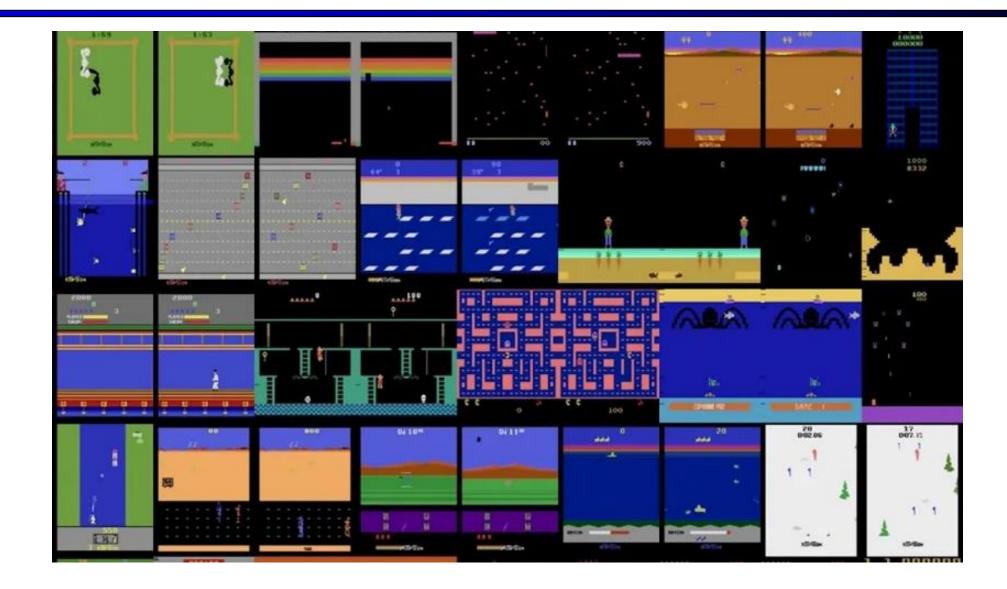
### Finished

[Kohl and Stone, ICRA 2004]

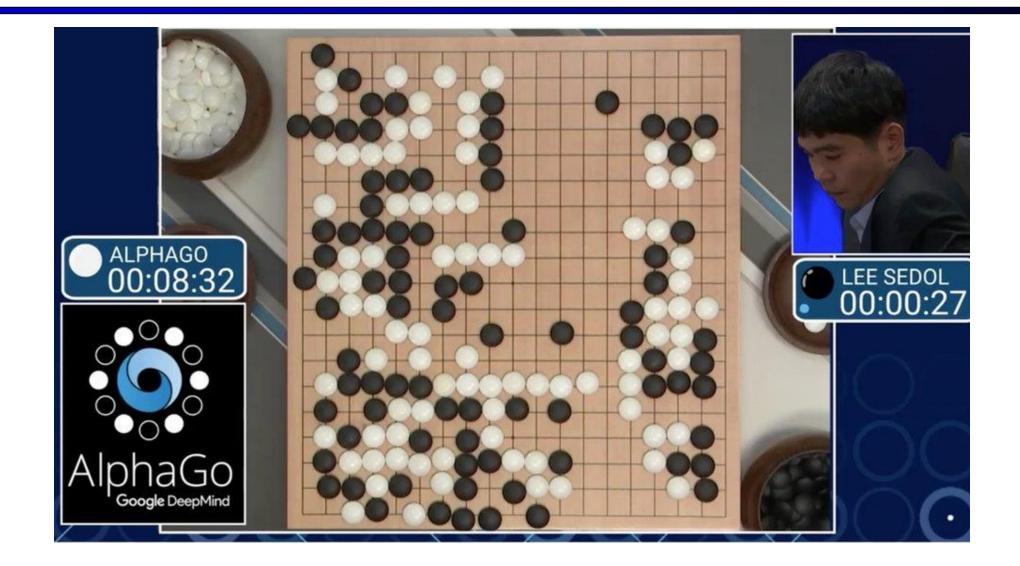
#### [Video: AIBO WALK – finished]

### https://vision-locomotion.github.io/



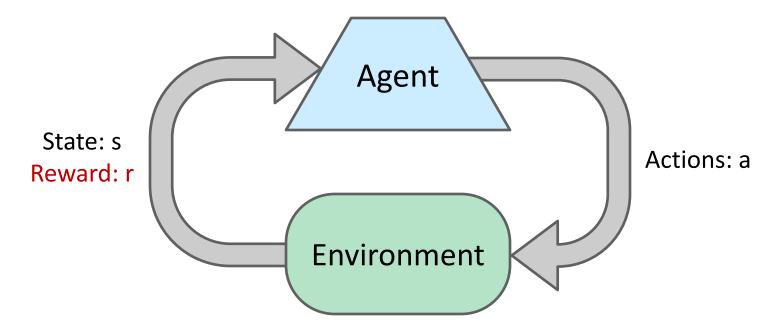








### **Reinforcement Learning**



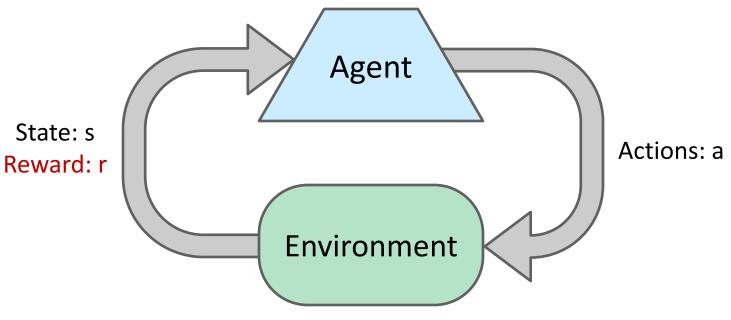
- Basic idea:
  - Receive feedback in the form of rewards
  - Agent's utility is defined by the reward function
  - Must (learn to) act so as to maximize expected rewards
  - All learning is based on observed samples of outcomes!

# Why Reinforcement Learning?

- Takes inspiration from nature
- Often easier to encode a task as a sparse reward (e.g. recognize if goal is achieved) but hard to hand-code how to act so reward is maximized (e.g. Go)
- General purpose AI framework

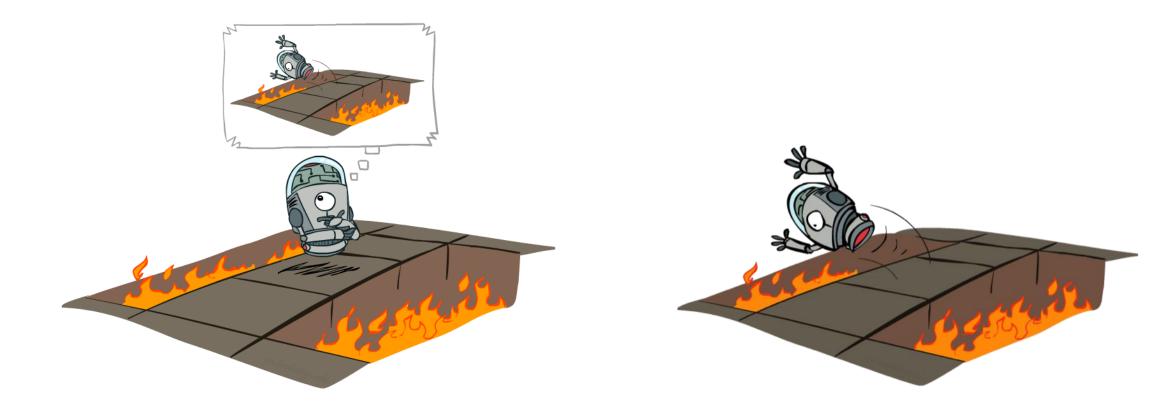
# **Reinforcement Learning**

- Still assume a Markov decision process (MDP):
  - A set of states s ∈ S
  - A set of actions (per state) A
  - A model T(s,a,s')
  - A reward function R(s,a,s')
- Still looking for a policy π(s)



- New twist: don't know T or R
  - I.e. we don't know which states are good or what the actions do
  - Must actually try actions and states out to learn

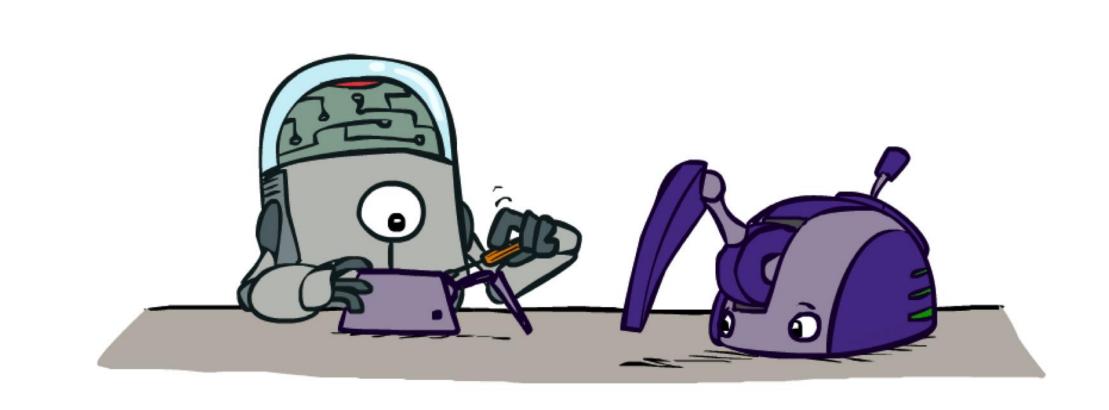
### Offline (MDPs) vs. Online (RL)



### **Offline Solution**

**Online Learning** 

### **Model-Based Learning**



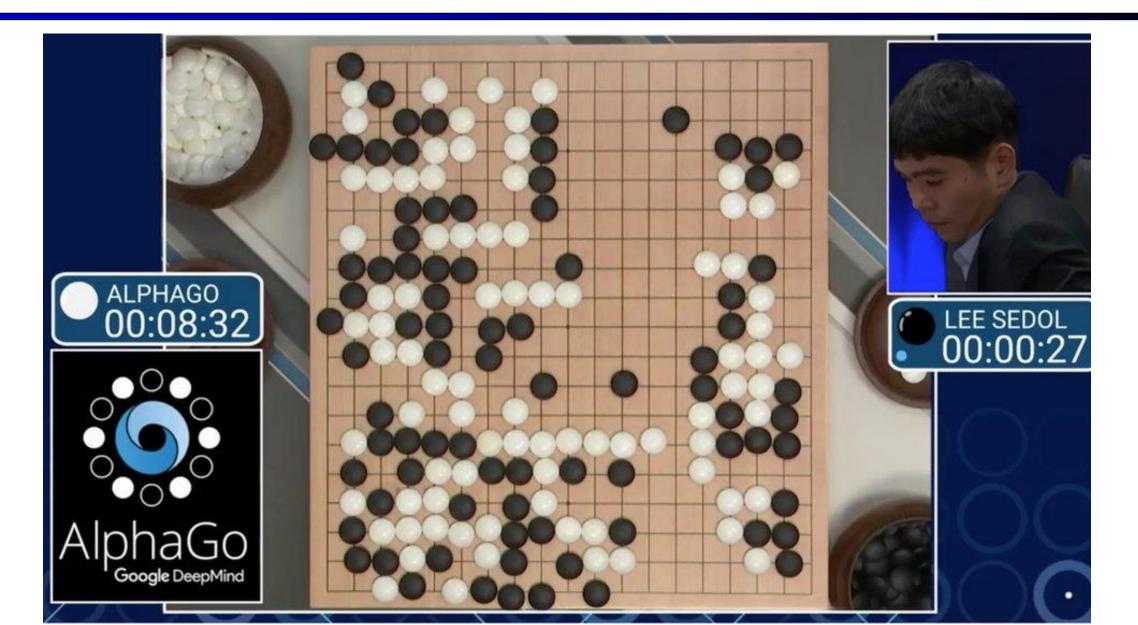
# Simple View of Model-Based RL

- Model-Based Idea:
  - Learn an approximate model based on experiences
  - Solve for values as if the learned model were correct
- Step 1: Learn empirical MDP model
  - Count outcomes s' for each s, a
  - Normalize to give an estimate of  $\widehat{T}(s, a, s')$
  - Discover each  $\hat{R}(s, a, s')$  when we experience (s, a, s')
- Step 2: Solve the learned MDP
  - For example, use value iteration, as before





### Sometimes Model of World is Known



### Deep RL Makes a Big Splash!

nature Explore content ~ About the journal ∽ Publish with us ~ Subscribe

<u>nature</u> > <u>letters</u> > article

#### Published: 25 February 2015

# Human-level control through deep reinforcement learning

Volodymyr Mnih, Koray Kavukcuoglu <sup>C</sup>, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, <u>Alex Graves</u>, <u>Martin Riedmiller</u>, <u>Andreas K. Fidjeland</u>, <u>Georg Ostrovski</u>, <u>Stig Petersen</u>, <u>Charles Beattie</u>, <u>Amir</u> <u>Sadik</u>, <u>Ioannis Antonoglou</u>, <u>Helen King</u>, <u>Dharshan Kumaran</u>, <u>Daan Wierstra</u>, <u>Shane Legg</u> & <u>Demis Hassabis</u> Search Q

TechCrunch+

Startups

Venture

Security

Al

Crypto

Apps

Events

Startup Battlefield

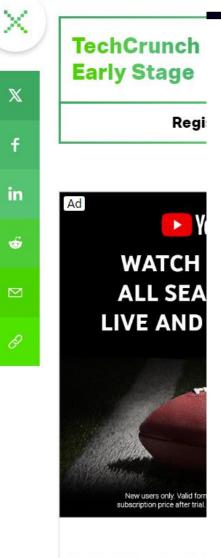
More

#### Startups

### Google Acquires Artificial Intelligence Startup DeepMind For More Than \$500M

Catherine Shu @catherineshu / 6:20 PM MST • January 26, 2014





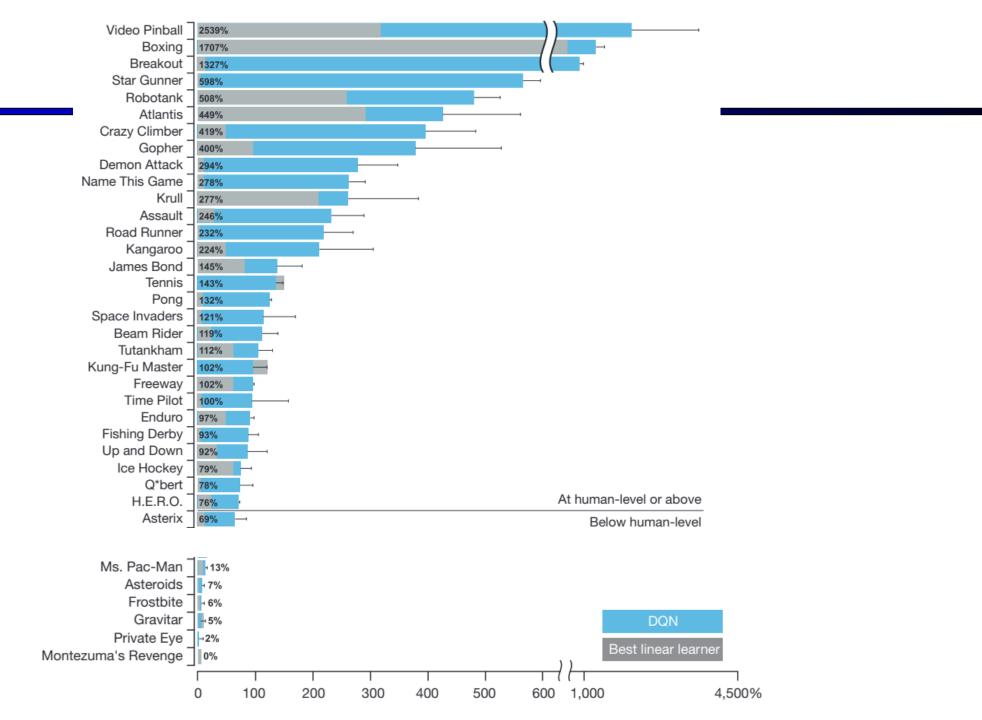
YouTube T'

Comment

## The Arcade Learning Environment











### When might RL be a good tool for your problem?

# When might RL be a good tool for your problem?

- Is your problem a sequential decision making problem?
- Are there "actions" that effect the next "state"?
- Do you know the rules of these effects?
- Can you write down a clear objective/score/reward/cost?
- Do you have a simulator?
- Lots of examples of sequences of decisions and their long-term consequences?
- Is it unclear what to do in each state? Exploration required?
- Are you looking for unique/creative/super-human solutions?

### When might RL not be a good tool?

## When might RL not be a good tool?

- Single step or static problem
- No clear reward signal.
- Reward signal is unavailable or very hard to write down.
- Well-known model of the environment.
- Deterministic environment
- Low-tolerance for exploration and trial and error
- No need for adaptive or novel solutions. The goal is to perform the task in a very predictable way.