
Intro/Refresher on MDPs and Reinforcement Learning

Instructor: Daniel Brown

University of Utah
[Based on slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. http://ai.berkeley.edu.]

Markov Decision Processes

▪ An MDP is defined by:
▪ A set of states s  S
▪ A set of actions a  A
▪ A transition function T(s, a, s’)

▪ Probability that a from s leads to s’, i.e., P(s’| s, a)
▪ Also called the model or the dynamics

▪ A reward function R(s, a, s’)
▪ Sometimes just R(s), R(s,a), or R(s’)

▪ A start state
▪ Maybe a terminal state

▪ MDPs are non-deterministic search problems
▪ One way to solve them is with expectimax search
▪ We’ll have a new tool soon

[Demo – gridworld manual intro (L8D1)]

Other examples of MDPs

▪ Checkers Boardgame

▪ Medication treatment

Other examples of MDPs

▪ Self-driving car

▪ Language Generation (ChatGPT)

What is Markov about MDPs?

▪ “Markov” generally means that given the present state, the
future and the past are independent. Conditional Independence!

▪ For Markov decision processes, “Markov” means action
outcomes depend only on the current state

▪ This is just like search, where the successor function could only
depend on the current state (not the history)

Andrey Markov
(1856-1922)

Types of Markov Models

Policies

Optimal policy when R(s, a, s’) = -0.03
for all non-terminals s

▪ In deterministic single-agent search problems,
we wanted an optimal plan, or sequence of
actions, from start to a goal

▪ For MDPs, we want an optimal policy *: S → A
▪ A policy  gives an action for each state

▪ An optimal policy is one that maximizes
expected utility if followed

▪ An explicit policy defines a reflex agent

Optimal Policies

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01

Discounting

▪ It’s reasonable to maximize the sum of rewards

▪ It’s also reasonable to prefer rewards now to rewards later

▪ One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps

Discounting

▪ How to discount?
▪ Each time we descend a level, we

multiply in the discount once

▪ Why discount?
▪ Sooner rewards probably do have

higher utility than later rewards

▪ Also helps our algorithms converge

▪ Example: discount of 0.5
▪ U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3

▪ U([1,2,3]) < U([3,2,1])

Stationary Preferences

▪ Theorem: if we assume stationary preferences:

▪ Then: there are only two ways to define utilities

▪ Additive utility:

▪ Discounted utility:

Quiz: Discounting

▪ Given: reward

▪ Actions: East, West, and Exit (only available in exit states a, e)

▪ Transitions: deterministic

▪ Quiz 1: For  = 1, what is the optimal policy?

▪ Quiz 2: For  = 0.1, what is the optimal policy?

▪ Quiz 3: For which  are West and East equally good when in state d?

Infinite Utilities?!

▪ Problem: What if the game lasts forever? Do we get infinite rewards?

▪ Solutions:

▪ Finite horizon: (similar to depth-limited search)
▪ Terminate episodes after a fixed T steps (e.g. life)

▪ Gives nonstationary policies ( depends on time left)

▪ Discounting: use 0 <  < 1

▪ Smaller  means smaller “horizon” – shorter term focus

▪ Absorbing state: guarantee that for every policy, a terminal state will eventually
be reached (like “overheated” for racing)

Why?

MDP Notation

▪ Markov decision processes:
▪ Set of states S
▪ Start state s0

▪ Set of actions A
▪ Transitions P(s’|s,a) (or T(s,a,s’))
▪ Rewards R(s,a,s’) (and discount )

▪ Important MDP quantities:
▪ Policy = Choice of action for each state
▪ Utility = expected sum of (discounted) rewards = “expected return”

a

s

s, a

s,a,s’

s’

Fixed Policies

▪ If we fixed some policy (s), then the computation is simpler – only one action per state
▪ … though the performance now depend on which policy we fixed

a

s

s, a

s,a,s’

s’

(s)

s

s, (s)

s, (s),s’

s’

Choosing actions Do what  says to do

Performance of a Fixed Policy

▪ Goal: compute the utility of a state s under a fixed (generally
non-optimal) policy

▪ Define the utility of a state s, under a fixed policy :

V(s) = expected total discounted rewards starting in s and
following 

▪ Recursive relation (one-step look-ahead):

(s)

s

s, (s)

s, (s),s’

s’

Example: Policy Evaluation

Always Go Right Always Go Forward

Example: Policy Evaluation

Always Go Right Always Go Forward

Policy Evaluation

▪ How do we calculate the V’s for a fixed policy ?

▪ Idea 1: Turn recursive Bellman equations into updates

▪ Efficiency: O(S2) per iteration

▪ Idea 2: Just a linear system
▪ Solve with Numpy or Matlab (or your favorite linear system solver)

(s)

s

s, (s)

s, (s),s’

s’

Policy Evaluation

▪ Idea 2: The Policy Evaluatoin Bellman equations are just a linear system
▪ Solve with Numpy or Matlab (or your favorite linear system solver)

Solving MDPs

Optimal Quantities

▪ The value (utility) of a state s:
V*(s) = expected utility starting in s and

acting optimally

▪ The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out

having taken action a from state s and
(thereafter) acting optimally

▪ The optimal policy:
*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a
transition

s,a,s’

s is a
state

(s, a) is a
q-state

𝜋∗ 𝑠 = arg max Q∗(s, a)
𝑎

Can we write the optimal policy in
terms of Q*?

The Bellman Equations

How to be optimal:

 Step 1: Take correct first action

 Step 2: Keep being optimal

Bellman Equations

▪ Fundamental operation: compute the (expectimax) value of a state

▪ Expected utility under optimal action

▪ Average sum of (discounted) rewards

▪ This is just what expectimax computed!

▪ Recursive definition of value:

a

s

s, a

s,a,s’

s’

Aside: Different ways to write Bellman Eqns

▪ What if R only depends on state and action? e.g. R(s,a,s’) = R(s,a)

𝑄∗ 𝑠, 𝑎 =

Aside: Different ways to write Bellman Eqns

▪ What if R only depends on state? e.g. R(s,a,s’) = R(s)

𝑄∗ 𝑠, 𝑎 =

Value Iteration

▪ Start with V0(s) = 0: no time steps left means an expected reward sum of zero

▪ Given vector of Vk(s) values, do one ply of expectimax from each state:

▪ Repeat until convergence

▪ Complexity of each iteration: O(S2A)

▪ Theorem: will converge to unique optimal values
▪ Basic idea: approximations get refined towards optimal values
▪ Policy may converge long before values do

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)

Bellman Update Equation

k=0

Noise = 0.2
Discount = 0.9
Living reward = 0

k=1

Noise = 0.2
Discount = 0.9
Living reward = 0

k=2

Noise = 0.2
Discount = 0.9
Living reward = 0

k=3

Noise = 0.2
Discount = 0.9
Living reward = 0

k=4

Noise = 0.2
Discount = 0.9
Living reward = 0

k=5

Noise = 0.2
Discount = 0.9
Living reward = 0

k=6

Noise = 0.2
Discount = 0.9
Living reward = 0

k=7

Noise = 0.2
Discount = 0.9
Living reward = 0

k=8

Noise = 0.2
Discount = 0.9
Living reward = 0

k=9

Noise = 0.2
Discount = 0.9
Living reward = 0

k=10

Noise = 0.2
Discount = 0.9
Living reward = 0

k=11

Noise = 0.2
Discount = 0.9
Living reward = 0

k=12

Noise = 0.2
Discount = 0.9
Living reward = 0

k=100

Noise = 0.2
Discount = 0.9
Living reward = 0

Value Iteration

▪ Bellman equations characterize the optimal values:

▪ Value iteration computes them:

▪ Value iteration is just a fixed point solution method
▪ … though the Vk vectors are also interpretable as time-limited values

a

V(s)

s, a

s,a,s’

V(s’)

Policy Extraction

Computing Actions from Values

▪ Let’s imagine we have the optimal values V*(s)

▪ How should we act?

▪ It’s not obvious!

▪ We need to do a mini-expectimax (one step)

▪ This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

▪ Let’s imagine we have the optimal q-values:

▪ How should we act?

▪ Completely trivial to decide!

▪ Important lesson: actions are easier to select from q-values than values!

Policy Iteration

Problems with Value Iteration

▪ Value iteration repeats the Bellman updates:

▪ Problem 1: It’s slow – O(S2A) per iteration

▪ Problem 2: The “max” at each state rarely changes

▪ Problem 3: The policy often converges long before the values

a

s

s, a

s,a,s’

s’

[Demo: value iteration (L9D2)]

k=10

Noise = 0.2
Discount = 0.9
Living reward = 0

k=100

Noise = 0.2
Discount = 0.9
Living reward = 0

Policy Iteration

▪ Alternative approach for optimal values:

▪ Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal
utilities!) until convergence

▪ Step 2: Policy improvement: update policy using one-step look-ahead with resulting
converged (but not optimal!) utilities as future values

▪ Repeat steps until policy converges

▪ This is policy iteration

▪ It’s still optimal!

▪ Can converge (much) faster under some conditions

Policy Iteration

▪ Evaluation: For fixed current policy , find values with policy evaluation:
▪ Iterate until values converge:

▪ Improvement: For fixed values, get a better policy using policy extraction
▪ One-step look-ahead:

Comparison

▪ Both value iteration and policy iteration compute the same thing (all optimal values)

▪ In value iteration:

▪ Every iteration updates both the values and (implicitly) the policy

▪ We don’t track the policy, but taking the max over actions implicitly recomputes it

▪ In policy iteration:

▪ We do several passes that update utilities with fixed policy (each pass is fast because we
consider only one action, not all of them)

▪ After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)

▪ The new policy will be better (or we’re done)

▪ Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

▪ So you want to….

▪ Compute optimal values: use value iteration or policy iteration

▪ Compute values for a particular policy: use policy evaluation

▪ Turn your values into a policy: use policy extraction (one-step lookahead)

▪ These all look the same!

▪ They basically are – they are all variations of Bellman updates

▪ They all use one-step lookahead computations

Reinforcement Learning

What changes?

▪ Rather than planning, we now need to learn!

▪ No access to underlying MDP, can’t solve it with just computation

▪ You needed to actually act to figure it out

▪ Extension and generalization of Multi-Armed Bandits

▪ Important ideas in reinforcement learning that came up

▪ Exploration: you have to try unknown actions to get information

▪ Exploitation: eventually, you have to use what you know

▪ Regret: even if you learn intelligently, you make mistakes

▪ Sampling: because of chance, you have to try things repeatedly

▪ Difficulty: learning can be much harder than solving a known MDP

Example: Learning to Walk

Initial A Learning Trial After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]

Example: Learning to Walk

Initial
[Video: AIBO WALK – initial][Kohl and Stone, ICRA 2004]

Example: Learning to Walk

Training
[Video: AIBO WALK – training][Kohl and Stone, ICRA 2004]

Example: Learning to Walk

Finished
[Video: AIBO WALK – finished][Kohl and Stone, ICRA 2004]

https://vision-locomotion.github.io/

Reinforcement Learning

▪ Basic idea:
▪ Receive feedback in the form of rewards

▪ Agent’s utility is defined by the reward function

▪ Must (learn to) act so as to maximize expected rewards

▪ All learning is based on observed samples of outcomes!

Environment

Agent

Actions: a
State: s

Reward: r

Why Reinforcement Learning?

▪ Takes inspiration from nature

▪ Often easier to encode a task as a sparse reward (e.g. recognize if
goal is achieved) but hard to hand-code how to act so reward is
maximized (e.g. Go)

▪ General purpose AI framework

Reinforcement Learning

▪ Still assume a Markov decision process (MDP):

▪ A set of states s  S

▪ A set of actions (per state) A

▪ A model T(s,a,s’)

▪ A reward function R(s,a,s’)

▪ Still looking for a policy (s)

▪ New twist: don’t know T or R

▪ I.e. we don’t know which states are good or what the actions do

▪ Must actually try actions and states out to learn

Environment

Agent

Actions: a
State: s

Reward: r

Offline (MDPs) vs. Online (RL)

Offline Solution Online Learning

Model-Based Learning

Simple View of Model-Based RL

▪ Model-Based Idea:
▪ Learn an approximate model based on experiences
▪ Solve for values as if the learned model were correct

▪ Step 1: Learn empirical MDP model
▪ Count outcomes s’ for each s, a
▪ Normalize to give an estimate of
▪ Discover each when we experience (s, a, s’)

▪ Step 2: Solve the learned MDP
▪ For example, use value iteration, as before

Sometimes Model of World is Known

Deep RL Makes a Big Splash!

73

74

The Arcade Learning Environment

75

77

78

79

When might RL be a good tool for your problem?

When might RL be a good tool for your problem?

▪ Is your problem a sequential decision making problem?

▪ Are there “actions” that effect the next “state”?

▪ Do you know the rules of these effects?

▪ Can you write down a clear objective/score/reward/cost?

▪ Do you have a simulator?

▪ Lots of examples of sequences of decisions and their long-term
consequences?

▪ Is it unclear what to do in each state? Exploration required?

▪ Are you looking for unique/creative/super-human solutions?

When might RL not be a good tool?

When might RL not be a good tool?

▪ Single step or static problem

▪ No clear reward signal.

▪ Reward signal is unavailable or very hard to write down.

▪ Well-known model of the environment.

▪ Deterministic environment

▪ Low-tolerance for exploration and trial and error

▪ No need for adaptive or novel solutions. The goal is to perform
the task in a very predictable way.

	Slide 1: Intro/Refresher on MDPs and Reinforcement Learning
	Slide 2: Markov Decision Processes
	Slide 3: Other examples of MDPs
	Slide 4: Other examples of MDPs
	Slide 5: What is Markov about MDPs?
	Slide 6: Types of Markov Models
	Slide 7: Policies
	Slide 8: Optimal Policies
	Slide 9: Discounting
	Slide 10: Discounting
	Slide 11: Stationary Preferences
	Slide 12: Quiz: Discounting
	Slide 13: Infinite Utilities?!
	Slide 14
	Slide 15: MDP Notation
	Slide 16: Fixed Policies
	Slide 17: Performance of a Fixed Policy
	Slide 18: Example: Policy Evaluation
	Slide 19: Example: Policy Evaluation
	Slide 20: Policy Evaluation
	Slide 21: Policy Evaluation
	Slide 22: Solving MDPs
	Slide 23: Optimal Quantities
	Slide 24: The Bellman Equations
	Slide 25: Bellman Equations
	Slide 26: Aside: Different ways to write Bellman Eqns
	Slide 27: Aside: Different ways to write Bellman Eqns
	Slide 28: Value Iteration
	Slide 29: k=0
	Slide 30: k=1
	Slide 31: k=2
	Slide 32: k=3
	Slide 33: k=4
	Slide 34: k=5
	Slide 35: k=6
	Slide 36: k=7
	Slide 37: k=8
	Slide 38: k=9
	Slide 39: k=10
	Slide 40: k=11
	Slide 41: k=12
	Slide 42: k=100
	Slide 43: Value Iteration
	Slide 44: Policy Extraction
	Slide 45: Computing Actions from Values
	Slide 46: Computing Actions from Q-Values
	Slide 47: Policy Iteration
	Slide 48: Problems with Value Iteration
	Slide 49: k=10
	Slide 50: k=100
	Slide 51: Policy Iteration
	Slide 52: Policy Iteration
	Slide 53: Comparison
	Slide 54: Summary: MDP Algorithms
	Slide 55: Reinforcement Learning
	Slide 56: What changes?
	Slide 57: Example: Learning to Walk
	Slide 58: Example: Learning to Walk
	Slide 59: Example: Learning to Walk
	Slide 60: Example: Learning to Walk
	Slide 61: https://vision-locomotion.github.io/
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66: Reinforcement Learning
	Slide 67: Why Reinforcement Learning?
	Slide 68: Reinforcement Learning
	Slide 69: Offline (MDPs) vs. Online (RL)
	Slide 70: Model-Based Learning
	Slide 71: Simple View of Model-Based RL
	Slide 72: Sometimes Model of World is Known
	Slide 73: Deep RL Makes a Big Splash!
	Slide 74
	Slide 75: The Arcade Learning Environment
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80: When might RL be a good tool for your problem?
	Slide 81: When might RL be a good tool for your problem?
	Slide 82: When might RL not be a good tool?
	Slide 83: When might RL not be a good tool?

