Intro/Refresher on MDPs and Reinforcement Learning

Instructor: Daniel Brown

University of Utah

[Based on slides created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. http://ai.berkeley.edu.]



= An MDP is defined by:

l R /
= AsetofstatesseS \ 5/96
= Asetof actionsa € A

= A transition function T(s, a, s’)
= Probability thgt afromsleadstos’,i.e., P(s’| s, a)
= Also called the model or the dynamics

A reward function R(s, a, s’) -

= Sometimes just R(s), R(s,a), or R(s’)
A start state
Maybe a terminal state
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= MDPs are non-deterministic search problems

= One way to solve them is with expectimax search
= We’ll have a new tool soon

[Demo — gridworld manual intro (L8D1)]



Other examples of MDPs
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= Medication treatment



Other examples of MDPs

= Self-driving car

" Language Generation (ChatGPT)



What is Markov about MDPs?

=) “Markov” generally means that given the present state, the
future and the past are independent. Conditional Independence!

= For Markov decision processes, “Markov” means action
outcomes depend only on the current state

/
P(St—i—l — S \St = 51, Ay = a, Si—1 = sp—1, A1, . .. SQ — So)
. . - ! - .

Andrey Markov
P(St_|_1 — S/‘St = Sy, A, = at) (1856-1922)

= This is just like search, where the successor function could only
depend on the current state (not the history)



Typesaof I\/Iaarkov Models 2+ ©: 9=
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System state is System state Is
fully observable partially observable
System is Markov chain Hidden Markov
autonomous MooV e | model (HMM)
System is Markov decision\ Partially observable
controlled process (MDP) Markov decision

process (POMDP)



Policies

In deterministic single-agent search problems,
we wanted an optimal plan, or sequence of
actions, from start to a goal

For MDPs, we want an optimal policy t*: S - A

= A policy t gives an action for each state

= An optimal policy is one that maximizes
expected utility if followed

= An explicit policy defines a reflex agent

Optimal policy when R(s, a, s’) =-0.03
for all non-terminals s



Optimal Policies




Discounting

" [t's reasonable to maximize the sum of rewards /)/é (O / />
" |t’s also reasonable to prefer rewards now to rewards later

= One solution: values of rewards decay exponentially
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Worth Now Worth Next Step Worth In Two Steps




Discounting

= How to discount?

= Each time we descend a level, we
multiply in the discount once

= Why discount?

= Sooner rewards probably do have
higher utility than later rewards

= Also helps our algorithms conyerge

= Example: discount of 0.5
= U([1,2,3]) = 1*1+0.5*2 + 0.25*3
= U123 <UE2T 5t




Stationary Preferences

" Theorem: if we assume stationary preferences:

L 2,

[al,ag, .. ] ~— [bl,bg, . ]

0

r a1, a2,... = [r,bi,bo, .. ]

" Then: there are only two ways to define utilities
= Additive utility: U([ro,71,72,...])) =r0+r1+r+---

= Discounted utility: U([rg,r1,72,...]) =rg4+~vr1 +~v2ro- -



C%uig: Discounting
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= Given: reward 10 1 Y O+b’0
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= Actions: East, West, and Exit (only available in exit states a, e) A 6;’ °
= Transitions: deterministic \ o2
" Quiz 1: Fory =1, what is the optimal policy? 10| & |-& |& j
N
= Quiz 2: Fory =0.1, what is the optimal policy? 10|~ | [—>] 1

Quiz 3: For which y are West and East equaIIy good when in state d?
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Infinite Utilities?!

" Problem: What if the game lasts forever? Do we get infinite rewards?

= Solutions:
= Finite horizon: (similar to depth-limited search)

= Terminate episodes after a fixed T steps (e.g. life)
= Gives nonstationary policies (mr depends on time left)

= Discounting:use0<y<1 Why?
U([rg,...ro0]) = Y 71t < Rmax/(1 — )
t=0

= Smaller y means smaller “horizon” — shorter term focus

= Absorbing state: guarantee that for every policy, a terminal state will eventually
be reached (like “overheated” for racing)






MDP Notation

" Markov decision processes:
= Set of states S
= Start state s,
= Set of actions A
" Transitions P(s’|s,a) (or T(s,a,s’))
» Rewards R(s,a,s’) (and discount v)

" [mportant MDP quantities:
= Policy = Choice of action for each state
= Utility = expected sum of (discounted) rewards = “expected return”



Fixed Policies

Choosing actions Do what 7t says to do

= |f we fixed some policy 1t(s), then the computation is simpler — only one action per state

= ... though the performance now depend on which policy we fixed



Performance of a Fixed Policy

Goal: compute the utility of a state s under a fixed (generally
non-optimal) policy

m(s)
Define the utility of a state s, under a fixed policy m:

V*(s) = expected total dlscounted rewards starting in s and
following _s;m(s),s’

s, ()

A
Recursive relation (one-step look-ahead):
VT(s) =) T(s,m(s),s)[R(s,m(s),s) +~V"(s)]

’ 3(% s, )
LQ(ST‘(Y S +—Y\/ /S' 1

S



Example: Policy Evaluation

Always Go Right Always Go Forward




Example: Policy Evaluation

Always Go Right 5 Always Go Forward




Policy Evaluation

How do we calculate the V’s for a fixed policy nt?

Idea 1: Turn recursive Bellman equations into updates

O
VT (s) = 0 |
Viga(s) < > _T(s,m(s),sNR(s,m(s),8") + vV (s))]
s/ 1

-
\, ()
Efficiency: O(S?) per iteration

Idea 2: Just a linear system
= Solve with Numpy or Matlab (or your favorite linear system solver)



5
Policy Evaluation 2255 e~/
é

" |dea 2: The Policy Evaluatoin Bellman equations are just a linear system

= Solve with Numpy or Matlab (or your favorite linear system solver) \/ u(g)
)

V’”(S) — ZT(S 7'(‘(8) 3)[R(3 71'(3) 3)+”YV7T(S )] \)(5n
al\sj‘\f‘o»\/k
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Solving MDPs




Optimal Quantities

"= The value (utility) of a state s:

V*(s) = expected utility starting in s and sisa
acting optimally state
s’ (s,a)isa
" The value (utility) of a g-state (s,a): P < g-state
Q’(s,a) = expected utility starting out e N
having taken action a from state s and 58,5 (s,a,8") is a
) transition

(thereafter) acting optimally

" The optimal policy:

n (s) = optimal action from state s Can we write the optimal policy in

n*(s) = argmax Q*(s, a) terms of Q*?
a



The Bellman Equations




Bellman Equations

* Fundamental operation: compute the (expectimax) value of a state
= Expected utility under optimal action
= Average sum of (discounted) rewards
" This is just what expectimax computed!

= Recursive definition of value: ,
V*(s) = maxQ*(s,a)

Q*(s,a) => T(s,a, s {R(s, a,s’) + *yV*(s’)]

V*i(s) = mCELBXZT(S, a,s’) {R(s,a, ") + ’)/V*(S')}

S



Aside: Different ways to write Bellman Eqns

= What if R only depends on state and action? e.g. R(s,a,s’) = R(s,a)

V*(s) = maxQ* (s, a)

Q" (s,a) =



Aside: Different ways to write Bellman Eqns

= What if R only depends on state? e.g. R(s,a,s’) = R(s)

V*(s) = maxQ* (s, a)

Q" (s,a) =



Value lteration

Start with V,(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

Viet1(s) <+ mC?XZT(S, a,s’) {R(s,a, s + W/Vk(sl)}

5 Bellman Update Equation

Repeat until convergence

Complexity of each iteration: O(S?A)

Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do
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k=4
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Cridworld Display
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k=12
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Value lteration

= Bellman equations characterize the optimal values:

V*(s) = mc?xZT(s, a,s’) [R(s,a, ") + ny*(s')}

= Value iteration computes them:

Viet1(s) mngT(s, a,s’) {R(s,a, s + ’YV[{(S,)}

= Value iteration is just a fixed point solution method

= ... though the V, vectors are also interpretable as time-limited values



Policy Extraction




Computing Actions from Values

Let’s imagine we have the optimal values V*(s)

How should we act?

= |t’s not obvious!

We need to do a mini-expectimax (one step)

\

7*(s) = arg L{LﬂaXZT(/S, a,s)[R(s,a,s) +yV*(s)]

S

This is called policy extraction, since it gets the policy implied by the values



Computing Actions from Q-Values

" Let’s imagine we have the optimal g-values: MW
NN
= How should we act? W.W
= Completely trivial to decide! E !

¥ (s) = arg max Q*(s, a) %%

" |[mportant lesson: actions are easier to select from g-values than values!




Policy Iteration




Problems with Value lteration

= Value iteration repeats the Bellman updates:

Vie-1(8) < mG?XZT(S, a,s) [R(s,a, s + nyk(s’)}

S

= Problem 1: It’s slow — O(S?A) per iteration

" Problem 2: The “max” at each state rarely changes

= Problem 3: The policy often converges long before the values

[Demo: value iteration (L9D2)]
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Policy Iteration

= Alternative approach for optimal values:

= Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal
utilities!) until convergence

= Step 2: Policy improvement: update policy using one-step look-ahead with resulting
converged (but not optimal!) utilities as future values

= Repeat steps until policy converges

= This is policy iteration
= |t's still optimal!

= Can converge (much) faster under some conditions



Policy Iteration

= Evaluation: For fixed current policy =, find values with policy evaluation:

= [terate until values converge:

Vkﬁ_'i'_l(g) — > T(s,m(s),s") [R(s, mi(s),s") + Vkm(sl)}

= |mprovement: For fixed values, get a better policy using policy extraction

= One-step look-ahead:

mi4+1(s) = arg maXZT(s, a,s’) [R(s, a,s’) + ’yV”Ti(SI)}

S



Comparison

Both value iteration and policy iteration compute the same thing (all optimal values)

In value iteration:
= Every iteration updates both the values and (implicitly) the policy
= We don’t track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:

= We do several passes that update utilities with fixed policy (each pass is fast because we
consider only one action, not all of them)

= After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
* The new policy will be better (or we’re done)

Both are dynamic programs for solving MDPs



Summary: MDP Algorithms

= S0 you want to....
= Compute optimal values: use value iteration or policy iteration
= Compute values for a particular policy: use policy evaluation
= Turn your values into a policy: use policy extraction (one-step lookahead)

" These all look the same!
* They basically are — they are all variations of Bellman updates
* They all use one-step lookahead computations



Reinforcement Learning




What changes?

= Rather than planning, we now need to learn!
= No access to underlying MDP, can’t solve it with just computation
" You needed to actually act to figure it out
= Extension and generalization of Multi-Armed Bandits

" |[mportant ideas in reinforcement learning that came up
= Exploration: you have to try unknown actions to get information
= Exploitation: eventually, you have to use what you know
= Regret: even if you learn intelligently, you make mistakes
= Sampling: because of chance, you have to try things repeatedly
= Difficulty: learning can be much harder than solving a known MDP



Example: Learning to Walk

Initial A Learning Trial After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]



Example: Learning to Walk

Initial
[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — initial]



Example: Learning to Walk

Training
[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — training]



Example: Learning to Walk

-

Finished

[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — finished]



https://vision-locomotion.github.io/
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ChatGPT



Reinforcement Learning

\

Agent \

State: s .
Reward: r Actions: a
\Environment
= Basic idea:

= Receive feedback in the form of rewards

= Agent’s utility is defined by the reward function

= Must (learn to) act so as to maximize expected rewards
= All learning is based on observed samples of outcomes!



Why Reinforcement Learning?

" Takes inspiration from nature

" Often easier to encode a task as a sparse reward (e.g. recognize if

goal is achieved) but hard to hand-code how to act so reward is
maximized (e.g. Go)

" General purpose Al framework



Reinforcement Learning

= Still assume a Markov decision process (MDP):
= Asetofstatess e S
= A set of actions (per state) A
= A model T(s,a,s’) State:
= A reward function R(s,a,s’) Reward: r

= Still looking for a policy m(s)

= New twist: don’t know T or R

>/Agent\ \

~

Environment

(&

= |.e. we don’t know which states are good or what the actions do

= Must actually try actions and states out to learn

Actions: a



Offline (MDPs) vs. Online (RL)

-

J
$
a

Offline Solution Online Learning




Model-Based Learning




Simple View of Model-Based RL

= Model-Based Idea:

= Learn an approximate model based on experiences
= Solve for values as if the learned model were correct

= Step 1: Learn empirical MDP model
= Count outcomes s’ for each s, a
= Normalize to give an estimate of T'(s, a, s')
= Discover each R(s,a,s’) when we experience (s, a, s’)

= Step 2: Solve the learned MDP

= For example, use value iteration, as before




Sometimes Model of World is Known
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Deep RL Makes a Big Splash!

nature

Explore content v  About the journal v  Publish with us v Subscribe

nature > letters > article

Published: 25 February 2015

Human-level control through deep reinforcement
learning

Volodymyr Mnih, Koray Kavukcuoglu &, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare,

Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig_Petersen, Charles Beattie, Amir

Sadik, loannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg & Demis Hassabis



LA » N~ ervvuullvsv

Google Acquires Artificial

Intelligence Startup DeepMind For
More Than $500M . .

Catherine Shu @catherineshu / 6:20 PM MST « January 26, 2014 ! Comment

oearcn Q

Regi

~~AO T i~k
eCrnuluncri+

Venture

DEEPMIND

YouTube T



The Arcade Learning Environment
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Video Pinball |

Boxing |

Breakout |

Star Gunner |

Robotank |

Atlantis |

Crazy Climber i

Gopher |

Demon Attack |

Name This Game |

Krull |

Assault |

Road Runner |

Kangaroo :
James Bond

Tennis |

Pong |

Space Invaders |

Beam Rider |

Tutankham |

Kung-Fu Master |

Freeway |

Time Pilot |

Enduro |

Fishing Derby |

Up and Down |

Ice Hockey |

Q*bert |

H.E.R.O. |

Asterix |

Ms. Pac-Man |
Asteroids |
Frostbite |
Gravitar |
Private Eye :

At

\

human-level or above

k3%
f7%
fe%
3
f2%

Montezuma's Revenge

| 0%

nmn;nmlnmNW

Below human-level

Best linear learner

c—

100 200

4,500%









When might RL be a good tool for your problem?



When might RL be a good tool for your problem?

" |s your problem a sequential decision making problem?

" Are there “actions” that effect the next “state”?

" Do you know the rules of these effects?

= Can you write down a clear objective/score/reward/cost?
" Do you have a simulator?

" | ots of examples of sequences of decisions and their long-term
consequences?

" |s it unclear what to do in each state? Exploration required?
= Are you looking for unique/creative/super-human solutions?



When might RL not be a good tool?



When might RL not be a good tool?

Single step or static problem

No clear reward signal.

Reward signal is unavailable or very hard to write down.
Well-known model of the environment.

Deterministic environment

Low-tolerance for exploration and trial and error

No need for adaptive or novel solutions. The goal is to perform
the task in a very predictable way.
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