More Advanced RL Algorithms

Published as a conference paper at ICLR 2016

CONTINUOUS CONTROL WITH DEEP REINFORCEMENT
LEARNING

Timothy P. Lillicrap; Jonat

Tom Erez, Yuval Tassa, Day Addressing Function Approximation Error in Actor-Critic Methods
Google Deepmind

London, UK
{countzero, jjhunt,
etom, tassa, davids

Scott Fujimoto' Herke van I

Soft Actor-Critic:
Off-Policy Maximum Entropy Deep Reinforcement
Learning with a Stochastic Actor

Tuomas Haarnoja' Aurick Zhou' Pieter Abbeel! Sergey Levine !

Instructor: Daniel Brown --- University of Utah

Rough Taxonomy of RL Algorithms

Policy Optimization

Policy Gradient —

A2C [/ A3C <+—

PPO o

RL Algorithms

Model-Free RL Model-Based RL
{ f 3 { :
Q-Learning Learn the Model
—> DQN *» World Models
—* DDPG I— ’
—* C51 > [2A
—> TD3]
——> QR-DQN » MBMF
> SAC L I—
—> HER MBVE

TRPO -«

\

Given the Model

\—% AlphaZero

Deep Deterministic Policy Gradients (DDPG)

Published as a conference paper at ICLR 2016

CONTINUOUS CONTROL WITH DEEP REINFORCEMENT
LEARNING

Timothy P. Lillicrap; Jonathan J. Hunt] Alexander Pritzel, Nicolas Heess,
Tom Erez, Yuval Tassa, David Silver & Daan Wierstra
Google Deepmind

[London, UK
{countzero, jjhunt, apritzel, heess,
etom, tassa, davidsilver, wierstra} @ google.com

DDPG Core Ideas

" Learn both a Q-Function and a Policy

= Uses off-policy data to learn a Q-function via the Bellman
equations

= Related to Q-Learning but only works with continuous action
spaces.

= Given Q* we ha
a'(s) = argmax Q" (s, a)
il

Key idea is to alternate learning a model of Q* and learning a
model of a™(s)

How to deal with continuous actions?

» Solving a*(s) = argmax Q*(s, a) is trivial if there are finite
a

actions, but in continuous spaces this is a non-trivial and complex
optimization problem that would have to be repeatedly solved
perhaps millions of times!

Learning a Q-function

= Qur old friend, the Bellman eauation

Q*(s,a) = E [-,,-.(_Sja_)+,.?,1.IH_}KQ*(S,-}Q,.)]

s~

" To train a neural net to approximate Q* we usually use an MSE
loss based on the Bellman equation

2
L(¢,D) = E (QU(S, a) — (I + (1 — d) 1‘11{}3}15{ Qﬁ-;,(s", a")))

(s,a,r,s".d)~D

Where d = 1 if “done” (terminal state reached) and d = 0 otherwise.

To stabilize training Q-functions

" We do the same things as done in DQN...
= Replay buffer to store experience (s,a,r,s’,d)

= The optimal Q-function should satisfy the Bellman equation for any transition so
we can train on any data (DDPG is an Off-Policy RL algorithm).

= Use a target network to stabilize MSE loss
= DDPG uses Polyak averaging like the DQN tutorial for HW4

Prarg < POrarg + (1 — p)g

How is this different than DQN?

= We also learn a target policy network to approximate the argmax

(s,a,r,s".d)~D

i 2
L(¢,D) = E (Qu(s, a) — (I + (1 —d) max Qs(s, (},")))

I 2
L(¢,D)= E (Qo(& a) = (1 +7(1 = d) Qe (5's 61, (5))))

(s,a,r,s",d)~D

But how??

" Policy learning in Deep Deterministic Policy Gradients (DDPG)?

" Just use gradient ascent (freezing Q-function weights)

m(?}{ SED [Qo(8, 1o(s))]

" To improve exploration, it is typical to add Gaussian noise to the
actions during training.

DDPG Overview

" Environment interaction during training:

= Take actions according to a ~ HOrarget (s) + noise
= Store (s,a,s’,r,d) in Buffer

" |n parallel or periodically train Q-function and policy

Randomly sample a batch of transitions, B = {(s,a,r,s’,d)} from D Update policy by one step of gradient ascent using
Compute targets 1
V{?E Z Qo(s, to(s))
y(r,s'sd) =1+ (1 = d)Qour (85 1 (57)) seB

Update Q-function by one step of gradient descent using

1 Update target networks with
Vorm Y. (Quls,a) —y(r,s',d))’

“|B | |
(s,a,r.s' . d)EB Dtarg — ;O(.Dtarg + (1 - P)Cﬁ’
Otarg < POrarg + (1 — p)0

Twin Delayed DDPG (TD3)

Addressing Function Approximation Error in Actor-Critic Methods

Scott Fujimoto' Herke van Hoof > David Meger '

" TD3 is an off-policy algorithm.
= TD3 only works with continuous action spaces.

Motivation

= What might go wrong in DDPG?

max SED Qs(5, 1o(s))]

" The policy is incentivized to exploit any errors in the Q-function!
" Leads to bad policy if Q-function ever overestimates Q-values.

12

Twin Delayed DDPG (TD3) Tricks

= Target Policy Smoothing

= Adds noise to the target action, to make it harder for the policy to
exploit Q-function errors.

= Clipped Double-Q Learning
= Learn two Q-functions instead of one (“twin”)

= Conservatively choose the smaller of the two Q-values when computing
the Bellman error

= Delayed Policy Updates
= Update the policy less frequently than the Q-function.
= Recommends one policy update for every two Q-function updates.

More details

= Adding noise to target actions

" a(s) = ugmrget(s) + noise

= Also usually clipped within any continuous action limits to prevent
impossible actions (same with DDPG)

" Double Q-Learning

2]
=

" Compute pessimistic target y(r,s',d) =r +~(1 —d) min Qo e (8,0 (8))

= Update both Q-functions via Bellman MSE loss

L(¢1,D) =

E
(s,a,r,s’,d)~D

_ o
(Qm (Sv a‘) — y(*“& S!a d))

L(¢9,D) =

E

(s,a,r,s’,d

2
)~D |:(Qc?2(31 CL) - y('?“,, Sr? d)) :|

Policy Learning

= Basically the same as DDPG

Hlél}{ SED [quu (Sa lLG(S))]

" But policy updates, and target policy updates, are less frequent
than Q-function updates for improved stability.
= Exploration still done by adding noise to rollouts.

= Another common trick is to start with uniform random policy to collect
a bunch of diverse data in the replay buffer

Soft Actor Critic

Soft Actor-Critic:
Off-Policy Maximum Entropy Deep Reinforcement

Learning with a Stochastic Actor

Tuomas Haarnoja' Aurick Zhou' Pieter Abbeel ' Sergey Levine

" Optimizes a Stochastic policy in an Off-Policy way.

= Makes use of entropy regularization to help with exploration and
stability.

" There are both continuous and discrete action versions.

Entropy Regularized RL

" Entropy strikes again! = - p(z)logp(a
rcX
1 .
. ZW({IIS) log ﬂ'(a\s) P(X:heads):5 P(X = tails) = =

Entropy

H(m) = —/w(a|5)lﬂgﬂ(a\s)d{1

20 40 60
Head (h) or Tails (t) probability (%)

Entropy Regularized RL

= Key idea: Give the policy a bonus for having high entropy.

7 = argmax E Zf}/t(R(sf, ary Spv1) + (W(bﬂ))
t=0 i

m T~

" The parameter a gives some control over exploration vs.
exploitation

Entropy Regularized RL

" We now can define entropy regularized value functions

SUZZS}

Q" (s,a) = E [Z v R(ss, az, S441) + (}iZ’}’tH (7(+|s¢))

T~
t=0 t=1

VW(S) == TE?T |:Z ’YT (R(St: t, St-l—l) + ot (W(Sf)))
t=0

S0 — S?QUZZG}

where

Vi(s) = E [Q"(s,a)] + o (7(:|s))

(A~TT

Entropy Regularized Bellman Equation

= We now have a new Bellman Equation

Q"(s,a) = E [R(s,a,5) +7(Q(s,a) + aH (x(|s)))
— JE—P [R(s,a,s") +~V7™(s")].

and with some rewriting we have

= E [R(s,0,5) +7(Q"(s',a) — alogn(a|s))

a' ~

Because H(X Z p(z)log p(x

Entropy Regularized Bellman Equation

= We now have a new Bellman Equation

Q"(s,a) = E_[R(s,a, s)+7(Q7(s,d') — alogm(a'ls))]

i
a ~i

" What do we do with expectations in RL?
= Approximate them with samples!! (s,a,r,s’)

Q" (s,a)~r+~v(Q"(s",a) —alogw(a'ls)), a ~xn(:|s)

Sampled from current policy (not
from replay buffer)

Soft Actor Critic High-Level

" |earns a policy and two Q-functions
= Takes minimum over Q-functions like TD3 but with extra entropy term.

" Optimizes a policy to maximize Q-function
= Similar to TD3, but with additional bonus for policy entropy

22

Applications

" https://sites.google.com/view/sac-and-applications

23

	Slide 1: More Advanced RL Algorithms
	Slide 2: Rough Taxonomy of RL Algorithms
	Slide 3: Deep Deterministic Policy Gradients (DDPG)
	Slide 4: DDPG Core Ideas
	Slide 5: How to deal with continuous actions?
	Slide 6: Learning a Q-function
	Slide 7: To stabilize training Q-functions
	Slide 8: How is this different than DQN?
	Slide 9: But how??
	Slide 10: DDPG Overview
	Slide 11: Twin Delayed DDPG (TD3)
	Slide 12: Motivation
	Slide 13: Twin Delayed DDPG (TD3) Tricks
	Slide 14: More details
	Slide 15: Policy Learning
	Slide 16: Soft Actor Critic
	Slide 17: Entropy Regularized RL
	Slide 18: Entropy Regularized RL
	Slide 19: Entropy Regularized RL
	Slide 20: Entropy Regularized Bellman Equation
	Slide 21: Entropy Regularized Bellman Equation
	Slide 22: Soft Actor Critic High-Level
	Slide 23: Applications

