
1 D-Separation

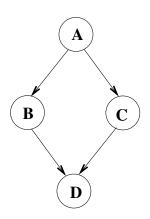
For the Bayes net below, determine if each independence assertion is guaranteed to be true.

- 1. $B \perp \!\!\! \perp C$
- 2. $B \perp \!\!\! \perp C \mid G$
- 3. $B \perp \!\!\! \perp C \mid H$
- 4. $A \perp \!\!\!\perp D \mid G$
- 5. $A \perp \!\!\!\perp D \mid H$
- 6. $B \perp \!\!\!\perp C \mid A, F$
- 7. $F \perp \!\!\! \perp B \mid D, A$
- 8. $F \perp \!\!\!\perp B \mid D, C$

2 Sampling

Consider the Bayes net below with corresponding CPTs.

1. Using Prior Sampling, generate 2 samples using the following random numbers for the following nodes:


A	В	С	D	Α	В	С	D
0.31	0.58	0.04	0.94	0.67	0.49	0.37	0.12

A	P(A)
+a	0.8
-a	0.2

			+ł
A	С	P(C A)	+1
+a	+c	0.7	+1
+a	-c	0.3	+ł
-a	+c	0.1	-}
-a	-c	0.9	-ŀ

A	В	P(B A)		
+a	+b	0.8		
+a	-b	0.2		
-a	+b	0.5		
-a	-b	0.5		

В	C	D	P(D B,C)
+b	+c	+d	0.3
+b	+c	-d	0.7
+b	-с	+d	0.1
+b	-c	-d	0.9
-b	+c	+d	0.2
-b	+c	-d	0.8
-b	-с	+d	0.9
-b	-с	-d	0.1

The samples are:

Sample 1:

Sample 2:

2. Given the samples below, answer the subsequent queries. We've done the first one for you.

(a)
$$P(+d) = 3/10$$

(b)
$$P(+a, -b) =$$

(c)
$$P(-a, -b, -c, -d) =$$

(d)
$$P(+d|-a,-b) =$$

3. Consider the query P(-d|-a,-b). Using the following random numbers, generate samples and their weights using likelihood weighting.

С	C D		D	
0.31	0.58	0.09	0.25	

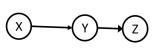
The samples and weights are:

Sample 1 and weight: Sample 2 and weight

4. Given the weighted samples below, answer the subsequent queries. We've done the first one for you.

(a)
$$P(+d) = (0.4+0.1+0.8)/(0.3+0.4+0.1+0.3+0.4+0.1+0.2+0.5+0.7+0.8) = 1.3/3.8$$

(b)
$$P(+a, -b) =$$


(c)
$$P(-a, -b, -c, -d) =$$

(d)
$$P(+d|-a,-b) =$$

3 (6300 only) D-Separation Proofs

1. Write out formal proofs for the following. Don't just write a bunch of equations. Make sure that you justify each step in words, provide a high-level explanation of what you are doing and why, and include a full derivation showing all your steps.

Causal Chain

Common Cause

Common Effect

(a) Causal Chain: $X \perp\!\!\!\perp Z \mid Y$

(b) Common Cause: $X \perp\!\!\!\perp Z \mid Y$

(c) Common Effect: $X \perp\!\!\!\perp Y$

2. Draw the topology for 4 different Bayes' nets that all obey the property that $X \perp \!\!\! \perp Y \mid W$. Each Bayes' net should have four random variables. Call them X, Y, Z, and W.