CS 6300: Artificial Intelligence

Reinforcement Learning IV: AlphaGo

‘ o ooe
00:08:32
YOTYAN -
O 4O e e
® ® - 9000 _
oA AS) © ©
e s "ale

AlphaGo 000e0

Google DeepMind

X ?) (‘
® 00 ad @ A (- LEEsEDOL
N 0 09 gee & | 00:00:27

Instructor: Daniel Brown --- University of Utah

Rough Taxonomy of RL Algorithms

Policy Optimization

Policy Gradient —

A2C [/ A3C <+—

PPO o

RL Algorithms

Model-Free RL Model-Based RL
{ f 3 { :
Q-Learning Learn the Model
—> DQN *» World Models
—* DDPG I— ’
—* C51 > [2A
—> TD3]
——> QR-DQN » MBMF
> SAC L I—
—> HER MBVE

TRPO -«

\

Given the Model

\—% AlphaZero

How to get an Al to play Go

" Branching factor close to 250
" Depth close to 150
= O(2507150) ~=5x107350

How AlphaGo works

= Monte Carlo Tree Search (MCTS)

= How Al chooses next move

= Value Network
= Al assess new positions using this network

" Reinforcement Learning
" Trains the Al by using the current best agent to play against itself

Review: Search Trees

’ _ This is now / start
"N';,]"()/ “E”, 1.0
u ! _ Possible futures
— —

= Asearch tree:

= A “what if” tree of plans and their outcomes

The start state is the root node

Children correspond to successors

Nodes show states, but correspond to PLANS that achieve those states

For most problems, we can never actually build the whole tree

Review: Searching with a Search Tree

= Search:
* Expand out potential plans (tree nodes)
" Maintain a fringe of partial plans under consideration
" Try to expand as few tree nodes as possible

Review: Min-Max Search Tree

MAX (X)
X X X
MIN (0) X X X
X X X
X]o X] [o] [X _
MAX (X) 0

x[o[x] [x]o X[o
MIN (O) X X
\\\ -)‘
e - -

0 X
TERMINAL O(X| |O
o) X

O| x>

X lo/x|lo—

0
o)
X
0

Utility -1

Review: Resource Limits

Problem: In realistic games, cannot search to leaves!

Solution: Depth-limited search
= |nstead, search only to a limited depth in the tree

= Replace terminal utilities with an evaluation function for
non-terminal positions

Example:
= Suppose we have 100 seconds, can explore 10K nodes / sec
= So can check 1M nodes per move
" - reaches about depth 8 — decent chess program

Guarantee of optimal play is gone
More plies makes a BIG difference

Use iterative deepening for an anytime algorithm

v

/

? ?

maXx

min

Monte Carlo Tree Search (MCTS)

Selection

= Starting at root node, select child nodes recursively in tree until a leaf
node L (unexplored node in fringe) is reached

Expansion

= Chosen leaf node, L, is added to the search tree and children are added
to fringe.

Evaluation (simulation)
" Run a simulated playout from L until you reach terminal state.

Backup

= Using simulation result, go back up the tree and update statistics
(values and visit counts) of encountered nodes.

Example

SELECTION EXPANSION
.J/__.--_---.\-.
11/21)
A AN
\-\.,\.\‘\/___‘\\ I/{_____EX/ /.- __L\. o
[3/8 | Kmu [0/3 |
D¢ 4 :
.-z'/' \l‘\ -'III. .III"-,
- 5 / N \ 7 ,r/_ o
1/2) 2/3) 2/3) | 2/4) | 1/6) |
k - .-’"J —_ / - / Ny VAN

Uses some kind of exploration function to select.
Based on empirical value estimate + exploration bonus
based on visit counts (optimism in the face of uncertainty).

Example

EXPANSION Evaluation/Simulation

TN 7

-
- - ™.
-’__.—-"" M"-_‘ {_‘_..f MH
L " -~ s
- T -~ -,

— - . . - .,
e _h\f Y Y AT h

/10 |

7

a-_// \ — - \\ 5,
I ! .-f ", I kY ff "-\
! W /..f \'-\ i Y .ff ,
s N, ; A
- "'L LI _ r ~ W ! 1} r %

TN SN TN TN TN SN N TN T

4 f ™ Y Iy -~ ! i F L' | oy -'| d 1 | fi | f Oy \ [B {)
[2/4 ﬁ.l [1/6) L2) [2/3) [2/3 | [2/4) 1/6 | | 1/2 | | 2/3) | 2/3 |
\ PR / \ , / Vi . A " iy x\ /r

o N e e
b

SIMULATION

0/1

i

P
&~

AN

"

."/,

&

.

@
b o

:fr 1/2 |'F 2/3
FEAY) J x\.

Example

*,
1-\.

%
\ |.'

&

- -'III
{
" .\I
2/4 |

How to scale MICTS to Go?

= Standard MCTS achieved strong amateur play but was never able
to beat a Go professional.

AlphaGo has several additional bells and whistles
1. Imitation Learning policy learned from human gameplay

2. Fast rollout policy to sample actions in MCTS
3. RL policy that improves on Imitation Learning policy
4. Value function trained to predict value of RL policy during self-

play

21

Supervised/Imitation Learning

" Maximize likelihood of human
actions given game state

Ps(anls)

Trained on 30 million Go
games scraped from the
Internet.

Network outputs a softmax
distribution over all
possible moves.

Update o to maximize
logps(anls)

Standard classification
problem

Feature Engineering

" Lots more than just where the black and white stones are:

Extended Data Table 2 | Input features for neural networks

Feature # of planes Description

Stone colour 3 Player stone / opponent stone / empty
Ones 1 A constant plane filled with 1
Turns since 8 How many turns since a move was played
Liberties 8 Number of liberties (empty adjacent points)
Capture size 8 How many opponent stones would be captured
Self-atari size 8 How many of own stones would be captured
Liberties after move 8 Number of liberties after this move 1s played
Ladder capture 1 Whether a move at this point is a successful ladder capture
Ladder escape I Whether a move at this point is a successful ladder escape
Sensibleness 1 Whether a move is legal and does not fill its own eyes
Zeros I A constant plane filled with 0
|

Player color Whether current player is black

Feature planes used by the policy network (all but last feature) and value network (all features).

95.7% accuracy with
just stone colors.

57% accuracy with all
features. Leads to
much stronger play.

Supervised/Imitation Learning

" Maximize likelihood of human
actions given game state

pa(ahls)

Rollout policy SL policy network

P Po
24% 57%

Accuracy Accuracy
2US m m 3ms

Much smaller. More hand-
engineered features.

Human expert positions

Policy Gradient Reinforcement Learning

Rollout policy SL policy network RL policy network
Px Py Initialize policy P,
Then run RL

Human expert positions Self-play positions

RL Policy Gradient Algorithm

Start with pretrained imitation learning policy
Pick random previous version of RL policy as opponent

Run Policy Gradient RL with 7}, =+1 if win, -1 if lose
n T

Pivs © P+ @ ZZ , logp,(at|st) (vina —v(sh))

1=1t= baseline

Results:
= 80% win rate against imitation policy

= 85% win rate against best open source Go program (100,000
simulations per move)

" I[mpressive since AlphaGo policy is not even using search!

Reinforcement Learning

Rollout policy SL policy network RL policy network Value network

pn po pp Yo

MIOM]BU [eINSN

vP(s)=E[zs;=s, a;

ele(

Human expert positions Self-play positions

£0

.T~p]

Reinforcement Learning

Rollout policy SL policy network RL policy network Value network Train to output true
value (+1/-1) of policy.
P P P 4 5
T o p 0 _C‘ v, (S’)

=X DS
=
% $ g E $ i S
D ¢ q _ s
Policy gradient ©)
=

@

®

o
w)
2
Q

Human expert positions Self-play positions

L9

Direct Evaluation (Monte Carlo Rollouts)

= Goal: Compute values for each state under &t

" |dea: Average together observed sample values

= Act accordingtom

= Every time you visit a state, write down what the
sum of discounted rewards turned out to be

= Average those samples

= This is called direct evaluation or Monte Carlo

evaluation T | 1 N T
V™ (s) = Ey Z)ftrt ~ Nz Zytrt
t=0 j

Learning a Value Network

. . . Evaluation of board positions (predicting win/loss)
Su perV|sed Learni ng using value function vs. Monte Carlo Rollouts with

. different policies.
" Gjven state s P

= Same target for all states in o

SL policy network
d £game. |
g 0151 ... mL policy network

—— Value network

0.50 ez
= Train V(s) to match true 0454

O 0.40 - 33 RS-
reward (+1/-1) at end of 5 8 |

2s 0354 ... Uniform random
game (MSE loss). S ¢ 0.30- rollout policy

= @ .

E,‘ %_ 0054 " Fast rollout policy

35

=

010
" Uses self-play to generate 15 45 75 105 135 165 195 225 255 >285
tons of games and samples Move number
states to avoid ove rfitting by Value network can evaluate board positions
. . as well as running Monte Carlo rollouts
simply memorizing games. using SL or RL policy but using 15,000

times less compute!

Fast Lookahead Search via MCTS

= Monte Carlo Tree Search to select actions via lookahead search
= Supervised Learning (SL) policy predicts probability for each legal action
= Value function is used to predict win/loss from any given state in tree

= Fast rollout policy (baby version of SL policy) is used for fast random
rollouts to get a second opinion of value of a state.

32

Fast Lookahead Search via MCTS

= Selection/Expansion

L
" Each edge of search tree stores +
I
= Action value Q(s,a
. (5,2) maxyy @ +u(P)
= Visit count N(s,a) S i
= Prior probability P(s,a) —+O']

= Action selection based on value and
exploration bonus

o
a; =argmax(Q(s,a)+ u(spa)) :ﬁ

a

| |
Q + u(P) .Am

P(S’ a) * When expanding a leaf node, Supervised Learning
1+ N(s, a) (SL) policy predicts probability for each legal action
and stores these as P(s,a)

u(s,a)

Fast Lookahead Search via MCTS

= Selection/Expansion

1o -

" Each edge of search tree stores
= Action value Q(s,a)

A oy

= Visit count N(s,a) __+*’_._ +

* Prior probability P(s,a) | |

= Action selection based on value and

exploration bonus O 4
" o (1) 14

at:argmax(Q(st,a) +u(st,a)) /I\P

P(S’ a) * When expanding a leaf node, Supervised Learning
1+ N(s, a) (SL) policy predicts probability for each legal action
and stores these as P(s,a)

u(s,a)

Fast Lookahead Search via MCTS

= Evaluation

T

= After expanding a leaf node get two
opinions on the value of the state e 1O

. . 199 o
" Evaluate with value function vg | 41

= Returns predicted probability of win

= Evaluate with fast rollout policy p,; -
» Play against itself for one game Vo ()
= Super fast. Trained on human games. i
= Combine to estimate value ~p,
¥

VisL) = (1= A)vg(se) + Az , (ﬁ)

Fast Lookahead Search via MCTS

" Backup

= Update action values and visit
counts of all traversed edges.

n
L . Number of times edge
N(s,a)= 231 1(s, a,1) (s,a) was selected.
1=

Qssa) = —1— S 1(s,a,1)V(s)

N(s,a) ;

Mean evaluation of all simulations
passing though edge (s,a).

AlphaGo MCTS Overview

Selection b Expansion c Evaluation d Backup

mak O+U

kit

Q + u(P) A’lax

ﬁ

| "3 i
Prior probs P(s,a) M e
. . ¢ & & ol
Action Selection determined by SL policy r (ﬁ) 5 ﬁ igi

a;=argmax(Q(s,a)+ u(sya))

Vi(sy)=(1—)\)VQ(SL) + Azp N(s,a)= zn: 1(s,a,1i)
P(s,a) -

u(s,a) NG

Where is the RL policy?? Q(s,a)=

	Slide 1: CS 6300: Artificial Intelligence
	Slide 3: Rough Taxonomy of RL Algorithms
	Slide 8: How to get an AI to play Go
	Slide 9: Go
	Slide 10: How AlphaGo works
	Slide 11: Review: Search Trees
	Slide 12: Review: Searching with a Search Tree
	Slide 13: Review: Min-Max Search Tree
	Slide 14: Review: Resource Limits
	Slide 15: Monte Carlo Tree Search (MCTS)
	Slide 16: Example
	Slide 17: Example
	Slide 18: Example
	Slide 21: How to scale MCTS to Go?
	Slide 22: Go
	Slide 23: Supervised/Imitation Learning
	Slide 24: Feature Engineering
	Slide 25: Supervised/Imitation Learning
	Slide 26: Policy Gradient Reinforcement Learning
	Slide 27: RL Policy Gradient Algorithm
	Slide 28: Reinforcement Learning
	Slide 29: Reinforcement Learning
	Slide 30: Direct Evaluation (Monte Carlo Rollouts)
	Slide 31: Learning a Value Network
	Slide 32: Fast Lookahead Search via MCTS
	Slide 33: Fast Lookahead Search via MCTS
	Slide 34: Fast Lookahead Search via MCTS
	Slide 35: Fast Lookahead Search via MCTS
	Slide 36: Fast Lookahead Search via MCTS
	Slide 37: AlphaGo MCTS Overview
	Slide 38: Go
	Slide 39: Go

