
CS 6300: Artificial Intelligence
Reinforcement Learning IV: AlphaGo

Instructor: Daniel Brown --- University of Utah



Rough Taxonomy of RL Algorithms
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How to get an AI to play Go

▪ Branching factor close to 250

▪ Depth close to 150

▪ O(250^150) ~= 5x10^350



Go
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How AlphaGo works

▪ Monte Carlo Tree Search (MCTS)

▪ How AI chooses next move

▪ Value Network

▪ AI assess new positions using this network

▪ Reinforcement Learning

▪ Trains the AI by using the current best agent to play against itself



Review: Search Trees

▪ A search tree:
▪ A “what if” tree of plans and their outcomes

▪ The start state is the root node

▪ Children correspond to successors

▪ Nodes show states, but correspond to PLANS that achieve those states

▪ For most problems, we can never actually build the whole tree

“E”, 1.0“N”, 1.0

This is now / start

Possible futures



Review: Searching with a Search Tree

▪ Search:
▪ Expand out potential plans (tree nodes)

▪ Maintain a fringe of partial plans under consideration

▪ Try to expand as few tree nodes as possible



Review: Min-Max Search Tree



Review: Resource Limits

▪ Problem: In realistic games, cannot search to leaves!

▪ Solution: Depth-limited search
▪ Instead, search only to a limited depth in the tree
▪ Replace terminal utilities with an evaluation function for 

non-terminal positions

▪ Example:
▪ Suppose we have 100 seconds, can explore 10K nodes / sec
▪ So can check 1M nodes per move
▪ - reaches about depth 8 – decent chess program

▪ Guarantee of optimal play is gone

▪ More plies makes a BIG difference

▪ Use iterative deepening for an anytime algorithm
? ? ? ?
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Monte Carlo Tree Search (MCTS)

▪ Selection

▪ Starting at root node, select child nodes recursively in tree until a leaf 
node L (unexplored node in fringe) is reached

▪ Expansion

▪ Chosen leaf node, L, is added to the search tree and children are added 
to fringe.

▪ Evaluation (simulation)

▪ Run a simulated playout from L until you reach terminal state.

▪ Backup

▪ Using simulation result, go back up the tree and update statistics 
(values and visit counts) of encountered nodes.



Example
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Uses some kind of exploration function to select.

Based on empirical value estimate + exploration bonus 

based on visit counts (optimism in the face of uncertainty).



Example
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Evaluation/Simulation



Example
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Backup



How to scale MCTS to Go?

▪ Standard MCTS achieved strong amateur play but was never able 
to beat a Go professional. 

AlphaGo has several additional bells and whistles

1. Imitation Learning policy learned from human gameplay

2. Fast rollout policy to sample actions in MCTS

3. RL policy that improves on Imitation Learning policy

4. Value function trained to predict value of RL policy during self-
play
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Go
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Supervised/Imitation Learning 

▪ Maximize likelihood of human 
actions given game state

𝑝𝜎(𝑎ℎ|𝑠)

• Trained on 30 million Go 

games scraped from the 

internet.

• Network outputs a softmax 

distribution over all 

possible moves.

• Update 𝜎 to maximize 

log 𝑝𝜎(𝑎ℎ|𝑠)

• Standard classification 

problem



Feature Engineering

▪ Lots more than just where the black and white stones are:
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55.7% accuracy with 

just stone colors.

57% accuracy with all 

features. Leads to 

much stronger play.



Supervised/Imitation Learning 

▪ Maximize likelihood of human 
actions given game state

𝑝𝜎(𝑎ℎ|𝑠)
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57%

Accuracy

3m𝑠

24%

Accuracy

2𝜇𝑠

Much smaller. More hand-

engineered features.



Policy Gradient Reinforcement Learning

Initialize policy

Then run RL



RL Policy Gradient Algorithm

▪ Start with pretrained imitation learning policy

▪ Pick random previous version of RL policy as opponent

▪ Run Policy Gradient RL with 𝑟𝑒𝑛𝑑
𝑖  =+1 if win, -1 if lose

▪ Results:

▪ 80% win rate against imitation policy

▪ 85% win rate against best open source Go program (100,000 
simulations per move) 

▪ Impressive since AlphaGo policy is not even using search!
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Reinforcement Learning
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Reinforcement Learning
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Train to output true 

value (+1/-1) of policy.



Direct Evaluation (Monte Carlo Rollouts)

▪ Goal: Compute values for each state under 

▪ Idea: Average together observed sample values

▪ Act according to 

▪ Every time you visit a state, write down what the 
sum of discounted rewards turned out to be

▪ Average those samples

▪ This is called direct evaluation or Monte Carlo 
evaluation
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Learning a Value Network

▪ Supervised Learning

▪ Given state s

▪ Train V(s) to match true 
reward (+1/-1) at end of 
game (MSE loss).

▪ Same target for all states in 
a game.

▪ Uses self-play to generate 
tons of games and samples 
states to avoid overfitting by 
simply memorizing games. 

Value network can evaluate board positions 

as well as running Monte Carlo rollouts 

using SL or RL policy but using 15,000 

times less compute!

Evaluation of board positions (predicting win/loss) 

using value function vs. Monte Carlo Rollouts with 

different policies.



Fast Lookahead Search via MCTS

▪ Monte Carlo Tree Search to select actions via lookahead search

▪ Supervised Learning (SL) policy predicts probability for each legal action

▪ Value function is used to predict win/loss from any given state in tree

▪ Fast rollout policy (baby version of SL policy) is used for fast random 
rollouts to get a second opinion of value of a state.
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Fast Lookahead Search via MCTS

▪ Selection/Expansion

▪ Each edge of search tree stores

▪ Action value Q(s,a)

▪ Visit count N(s,a)

▪ Prior probability P(s,a)

▪ Action selection based on value and 
exploration bonus

When expanding a leaf node, Supervised Learning 

(SL) policy predicts probability for each legal action 

and stores these as P(s,a)



Fast Lookahead Search via MCTS

▪ Selection/Expansion

▪ Each edge of search tree stores

▪ Action value Q(s,a)

▪ Visit count N(s,a)
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▪ Action selection based on value and 
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Fast Lookahead Search via MCTS

▪ Evaluation

▪ After expanding a leaf node get two 
opinions on the value of the state

▪ Evaluate with value function 𝑣𝜃

▪ Returns predicted probability of win

▪ Evaluate with fast rollout policy 𝑝𝜋

▪ Play against itself for one game

▪ Super fast. Trained on human games.

▪ Combine to estimate value 



Fast Lookahead Search via MCTS

▪ Backup

▪ Update action values and visit 
counts of all traversed edges.

Mean evaluation of all simulations 

passing though edge (s,a).

Number of times edge 

(s,a) was selected.



AlphaGo MCTS Overview

Action Selection

Prior probs P(s,a) 

determined by SL policy

Where is the RL policy??



Go
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