
CS 6300: Artificial Intelligence
Reinforcement Learning IV: AlphaGo

Instructor: Daniel Brown --- University of Utah

Rough Taxonomy of RL Algorithms

3

How to get an AI to play Go

▪ Branching factor close to 250

▪ Depth close to 150

▪ O(250^150) ~= 5x10^350

Go

9

How AlphaGo works

▪ Monte Carlo Tree Search (MCTS)

▪ How AI chooses next move

▪ Value Network

▪ AI assess new positions using this network

▪ Reinforcement Learning

▪ Trains the AI by using the current best agent to play against itself

Review: Search Trees

▪ A search tree:
▪ A “what if” tree of plans and their outcomes

▪ The start state is the root node

▪ Children correspond to successors

▪ Nodes show states, but correspond to PLANS that achieve those states

▪ For most problems, we can never actually build the whole tree

“E”, 1.0“N”, 1.0

This is now / start

Possible futures

Review: Searching with a Search Tree

▪ Search:
▪ Expand out potential plans (tree nodes)

▪ Maintain a fringe of partial plans under consideration

▪ Try to expand as few tree nodes as possible

Review: Min-Max Search Tree

Review: Resource Limits

▪ Problem: In realistic games, cannot search to leaves!

▪ Solution: Depth-limited search
▪ Instead, search only to a limited depth in the tree
▪ Replace terminal utilities with an evaluation function for

non-terminal positions

▪ Example:
▪ Suppose we have 100 seconds, can explore 10K nodes / sec
▪ So can check 1M nodes per move
▪ - reaches about depth 8 – decent chess program

▪ Guarantee of optimal play is gone

▪ More plies makes a BIG difference

▪ Use iterative deepening for an anytime algorithm
? ? ? ?

-1 -2 4 9

4

min

max

-2 4

Monte Carlo Tree Search (MCTS)

▪ Selection

▪ Starting at root node, select child nodes recursively in tree until a leaf
node L (unexplored node in fringe) is reached

▪ Expansion

▪ Chosen leaf node, L, is added to the search tree and children are added
to fringe.

▪ Evaluation (simulation)

▪ Run a simulated playout from L until you reach terminal state.

▪ Backup

▪ Using simulation result, go back up the tree and update statistics
(values and visit counts) of encountered nodes.

Example

16

Uses some kind of exploration function to select.

Based on empirical value estimate + exploration bonus

based on visit counts (optimism in the face of uncertainty).

Example

17

Evaluation/Simulation

Example

18

Backup

How to scale MCTS to Go?

▪ Standard MCTS achieved strong amateur play but was never able
to beat a Go professional.

AlphaGo has several additional bells and whistles

1. Imitation Learning policy learned from human gameplay

2. Fast rollout policy to sample actions in MCTS

3. RL policy that improves on Imitation Learning policy

4. Value function trained to predict value of RL policy during self-
play

21

Go

22

Supervised/Imitation Learning

▪ Maximize likelihood of human
actions given game state

𝑝𝜎(𝑎ℎ|𝑠)

• Trained on 30 million Go

games scraped from the

internet.

• Network outputs a softmax

distribution over all

possible moves.

• Update 𝜎 to maximize

log 𝑝𝜎(𝑎ℎ|𝑠)

• Standard classification

problem

Feature Engineering

▪ Lots more than just where the black and white stones are:

24

55.7% accuracy with

just stone colors.

57% accuracy with all

features. Leads to

much stronger play.

Supervised/Imitation Learning

▪ Maximize likelihood of human
actions given game state

𝑝𝜎(𝑎ℎ|𝑠)

25

57%

Accuracy

3m𝑠

24%

Accuracy

2𝜇𝑠

Much smaller. More hand-

engineered features.

Policy Gradient Reinforcement Learning

Initialize policy

Then run RL

RL Policy Gradient Algorithm

▪ Start with pretrained imitation learning policy

▪ Pick random previous version of RL policy as opponent

▪ Run Policy Gradient RL with 𝑟𝑒𝑛𝑑
𝑖 =+1 if win, -1 if lose

▪ Results:

▪ 80% win rate against imitation policy

▪ 85% win rate against best open source Go program (100,000
simulations per move)

▪ Impressive since AlphaGo policy is not even using search!

𝜌𝑘+1 ← 𝜌𝑘 + 𝛼
1

𝑛
෍

𝑖=1

𝑛

෍

𝑡=1

𝑇𝑖

∇𝜌 log 𝑝𝜌 𝑎𝑡
𝑖 𝑠𝑡

𝑖 𝑟𝑒𝑛𝑑
𝑖 − 𝑣 𝑠𝑡

𝑖

baseline

Reinforcement Learning

28

Reinforcement Learning

29

Train to output true

value (+1/-1) of policy.

Direct Evaluation (Monte Carlo Rollouts)

▪ Goal: Compute values for each state under 

▪ Idea: Average together observed sample values

▪ Act according to 

▪ Every time you visit a state, write down what the
sum of discounted rewards turned out to be

▪ Average those samples

▪ This is called direct evaluation or Monte Carlo
evaluation

𝑉𝜋 𝑠 = 𝐸𝜋 ෍

𝑡=0

𝑇

𝛾𝑡𝑟𝑡 ≈
1

𝑁
෍

𝑖=1

𝑁

෍

𝑡=0

𝑇

𝛾𝑡𝑟𝑡

Learning a Value Network

▪ Supervised Learning

▪ Given state s

▪ Train V(s) to match true
reward (+1/-1) at end of
game (MSE loss).

▪ Same target for all states in
a game.

▪ Uses self-play to generate
tons of games and samples
states to avoid overfitting by
simply memorizing games.

Value network can evaluate board positions

as well as running Monte Carlo rollouts

using SL or RL policy but using 15,000

times less compute!

Evaluation of board positions (predicting win/loss)

using value function vs. Monte Carlo Rollouts with

different policies.

Fast Lookahead Search via MCTS

▪ Monte Carlo Tree Search to select actions via lookahead search

▪ Supervised Learning (SL) policy predicts probability for each legal action

▪ Value function is used to predict win/loss from any given state in tree

▪ Fast rollout policy (baby version of SL policy) is used for fast random
rollouts to get a second opinion of value of a state.

32

Fast Lookahead Search via MCTS

▪ Selection/Expansion

▪ Each edge of search tree stores

▪ Action value Q(s,a)

▪ Visit count N(s,a)

▪ Prior probability P(s,a)

▪ Action selection based on value and
exploration bonus

When expanding a leaf node, Supervised Learning

(SL) policy predicts probability for each legal action

and stores these as P(s,a)

Fast Lookahead Search via MCTS

▪ Selection/Expansion

▪ Each edge of search tree stores

▪ Action value Q(s,a)

▪ Visit count N(s,a)

▪ Prior probability P(s,a)

▪ Action selection based on value and
exploration bonus

When expanding a leaf node, Supervised Learning

(SL) policy predicts probability for each legal action

and stores these as P(s,a)

Fast Lookahead Search via MCTS

▪ Evaluation

▪ After expanding a leaf node get two
opinions on the value of the state

▪ Evaluate with value function 𝑣𝜃

▪ Returns predicted probability of win

▪ Evaluate with fast rollout policy 𝑝𝜋

▪ Play against itself for one game

▪ Super fast. Trained on human games.

▪ Combine to estimate value

Fast Lookahead Search via MCTS

▪ Backup

▪ Update action values and visit
counts of all traversed edges.

Mean evaluation of all simulations

passing though edge (s,a).

Number of times edge

(s,a) was selected.

AlphaGo MCTS Overview

Action Selection

Prior probs P(s,a)

determined by SL policy

Where is the RL policy??

Go

38

Go

39

	Slide 1: CS 6300: Artificial Intelligence
	Slide 3: Rough Taxonomy of RL Algorithms
	Slide 8: How to get an AI to play Go
	Slide 9: Go
	Slide 10: How AlphaGo works
	Slide 11: Review: Search Trees
	Slide 12: Review: Searching with a Search Tree
	Slide 13: Review: Min-Max Search Tree
	Slide 14: Review: Resource Limits
	Slide 15: Monte Carlo Tree Search (MCTS)
	Slide 16: Example
	Slide 17: Example
	Slide 18: Example
	Slide 21: How to scale MCTS to Go?
	Slide 22: Go
	Slide 23: Supervised/Imitation Learning
	Slide 24: Feature Engineering
	Slide 25: Supervised/Imitation Learning
	Slide 26: Policy Gradient Reinforcement Learning
	Slide 27: RL Policy Gradient Algorithm
	Slide 28: Reinforcement Learning
	Slide 29: Reinforcement Learning
	Slide 30: Direct Evaluation (Monte Carlo Rollouts)
	Slide 31: Learning a Value Network
	Slide 32: Fast Lookahead Search via MCTS
	Slide 33: Fast Lookahead Search via MCTS
	Slide 34: Fast Lookahead Search via MCTS
	Slide 35: Fast Lookahead Search via MCTS
	Slide 36: Fast Lookahead Search via MCTS
	Slide 37: AlphaGo MCTS Overview
	Slide 38: Go
	Slide 39: Go

