Imitation Learning and Inverse RL

Instructor: Daniel Brown

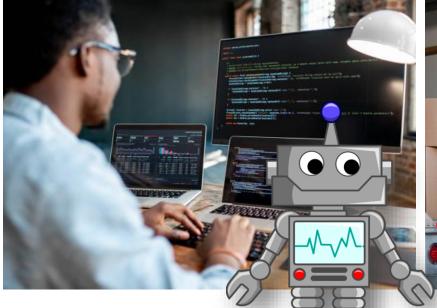
[Some slides adapted from Sergey Levine (CS 285) and Alina Vereshchaka (CSE4/510), and Ryan Hoque]

Announcements

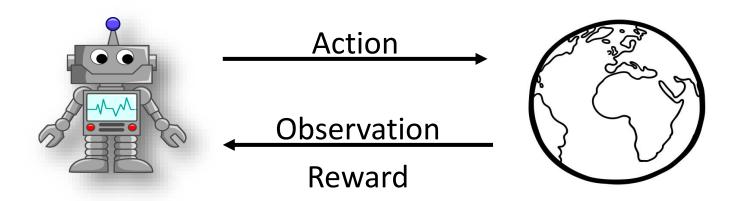
HW 8 due tomorrow!

Get started on Project 5.

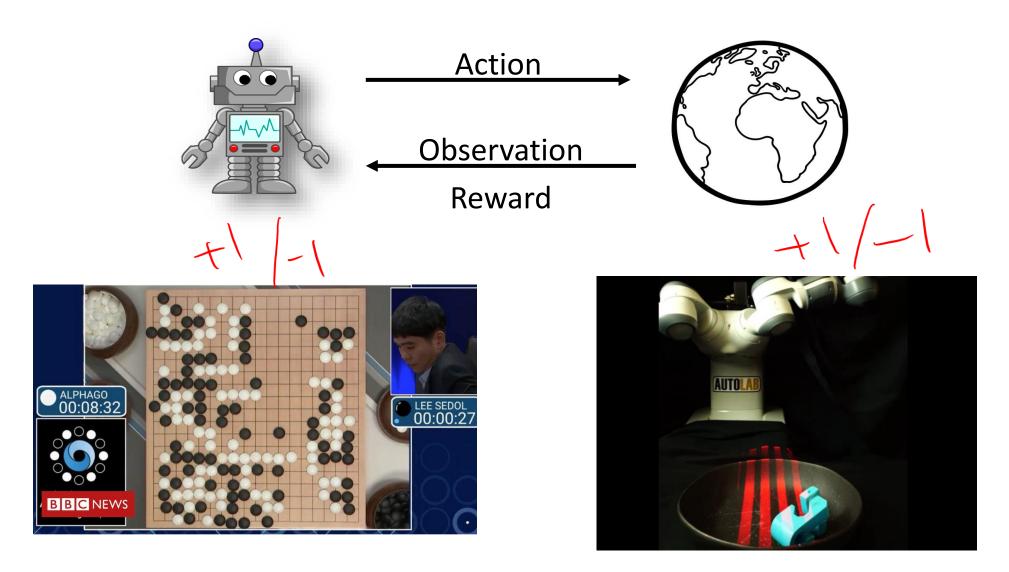
Check grades on gradescope and canvas to make sure they are consistent and show up on canvas. If not, visit a TA during office hours or make a post on Piazza.



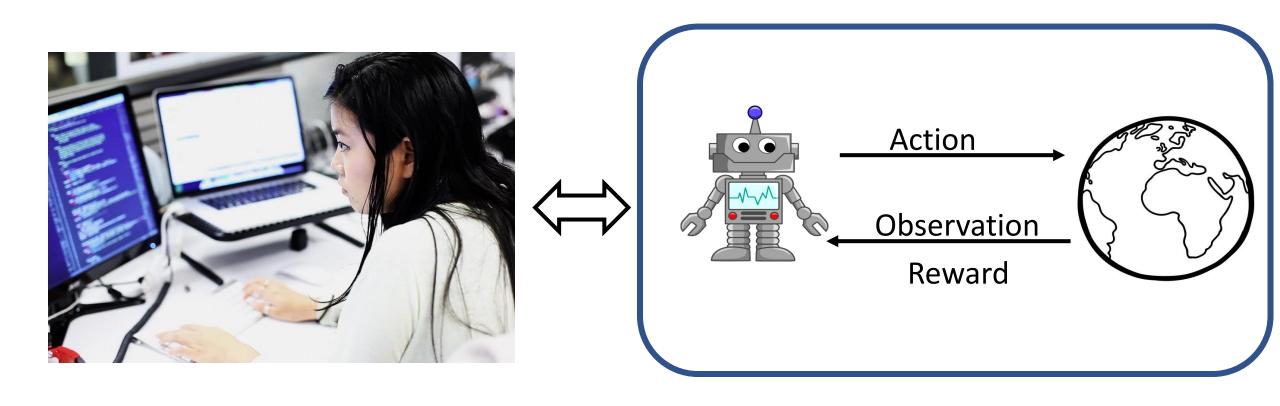
Reinforcement Learning



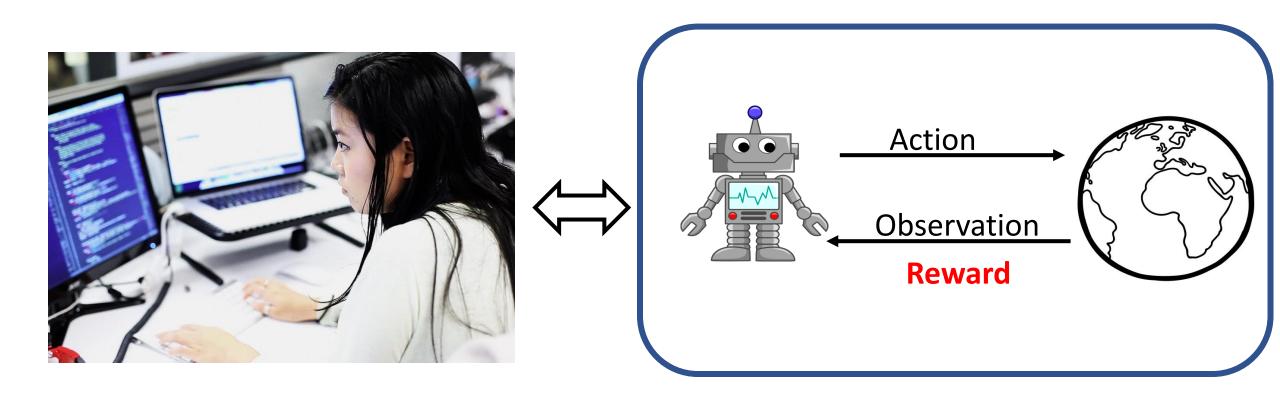
Reinforcement Learning



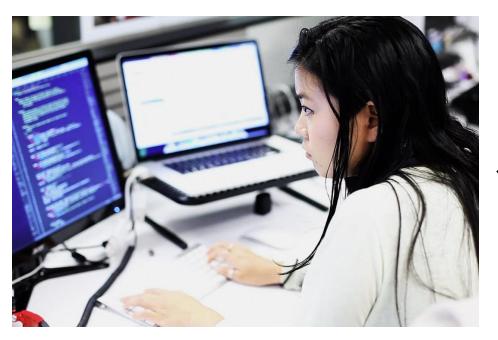
Reward engineering is hard!



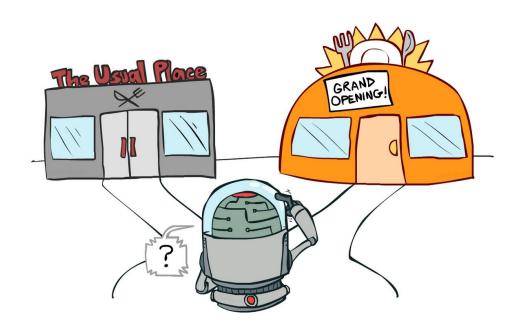
Reward engineering is hard!



Reward engineering is hard!

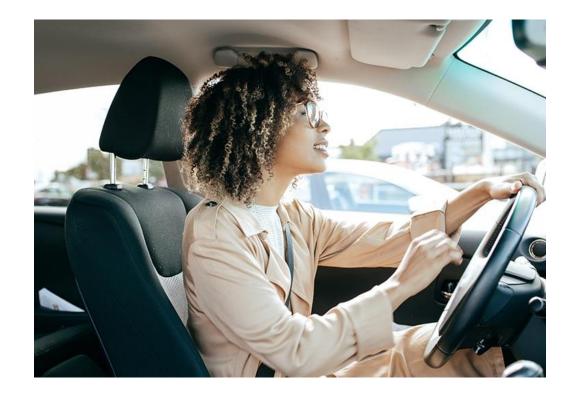


Reinforcement learning is hard...even with a reward function!



Imitation Learning:

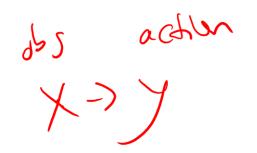
Learn a policy from examples of good behavior.

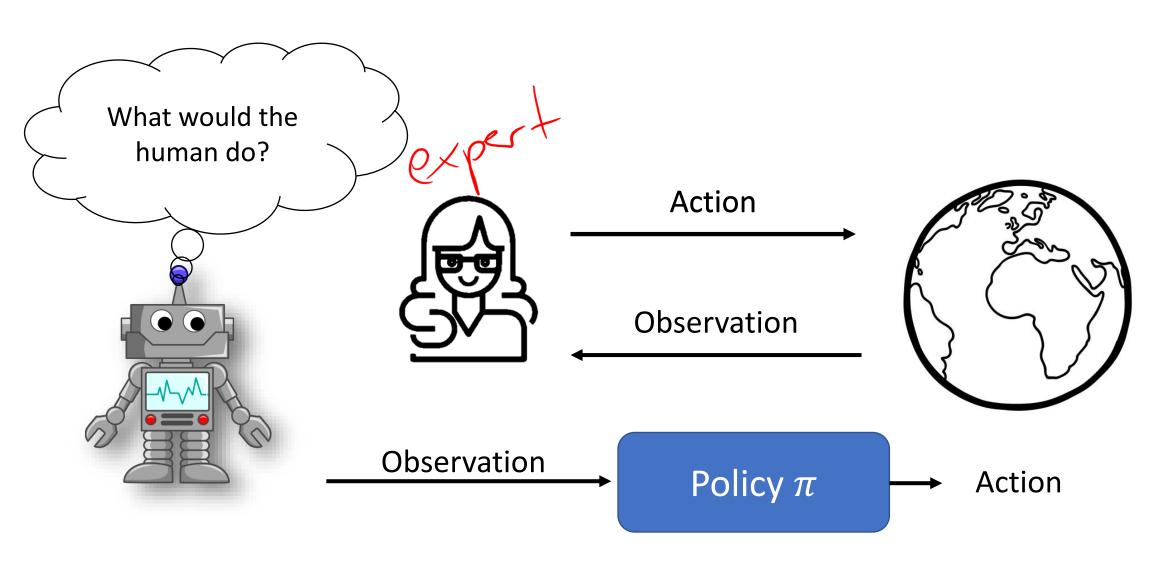


- Often showing is easier than telling.
- Alleviates problem of exploration.

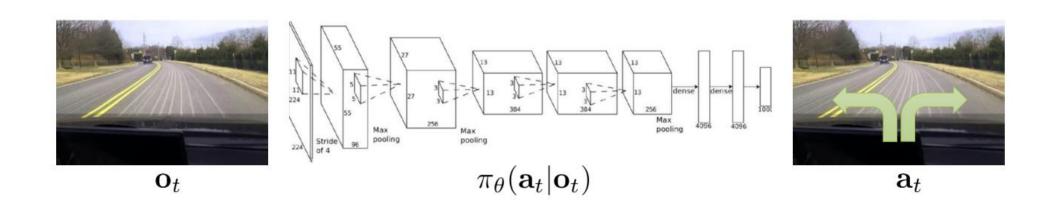
Learning From Demonstration (LfD)

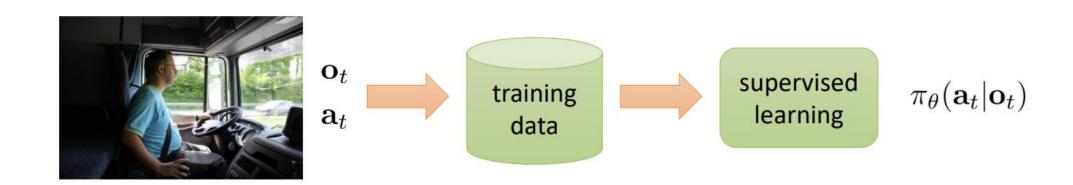
Behavioral Cloning





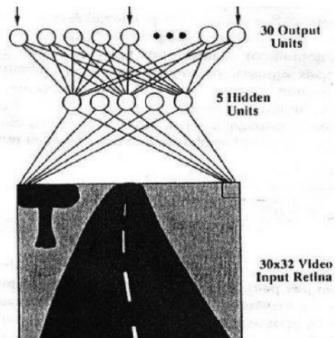
Imitation Learning via Behavioral Cloning





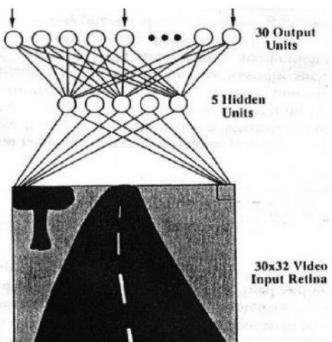
ALVINN: One of the first imitation learning systems

ALVINN: Autonomous Land Vehicle In a Neural Network 1989

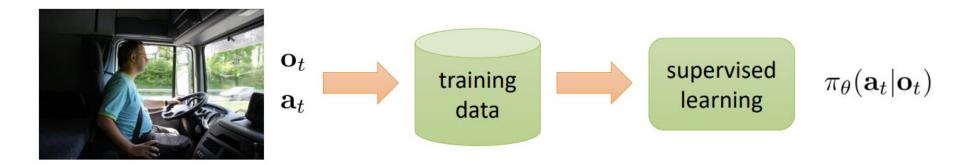


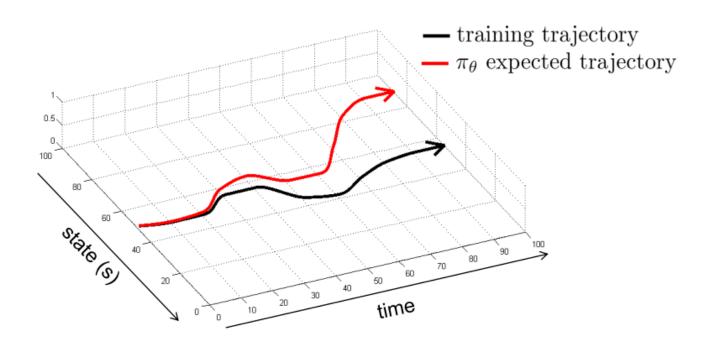
ALVINN: One of the first imitation learning systems

ALVINN: Autonomous Land Vehicle In a Neural Network 1989



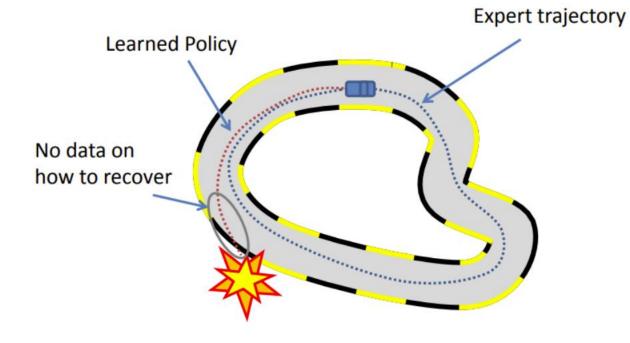
What could go wrong?





Distribution Shift

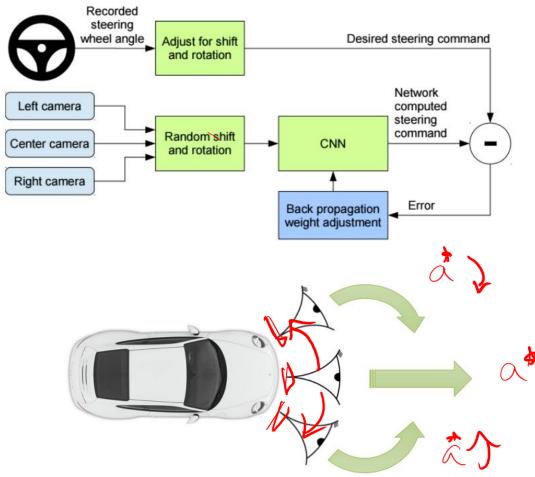
Deno
$$|e_{\pi^*}(o_t) \neq p_{\pi_{\theta}}(o_t)$$



	Supervised Learning	Supervised Learning + Control
Train	$(x,y) \sim D$	$s \sim P(\cdot \mid s, \pi^*(s))$
Test	$(x,y) \sim D$	$s \sim P(\cdot s, \pi_{\theta}(s))$

But it still can work in practice...

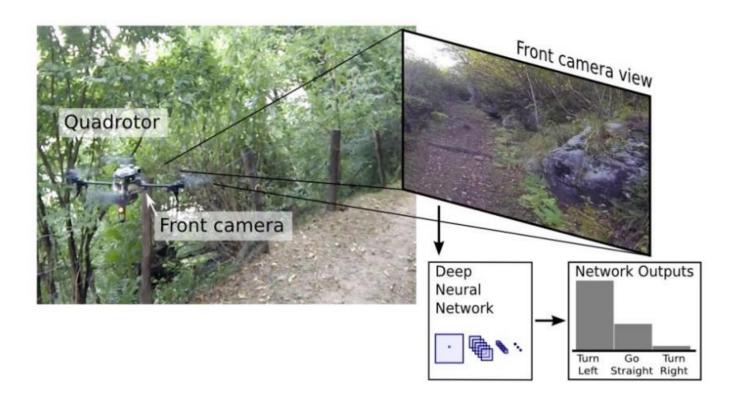
How?



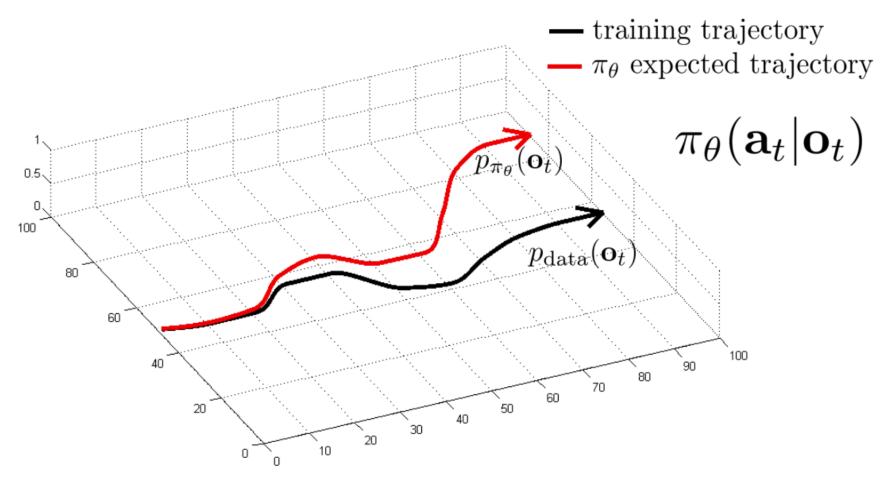
Bojarski et al. '16, NVIDIA

A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots

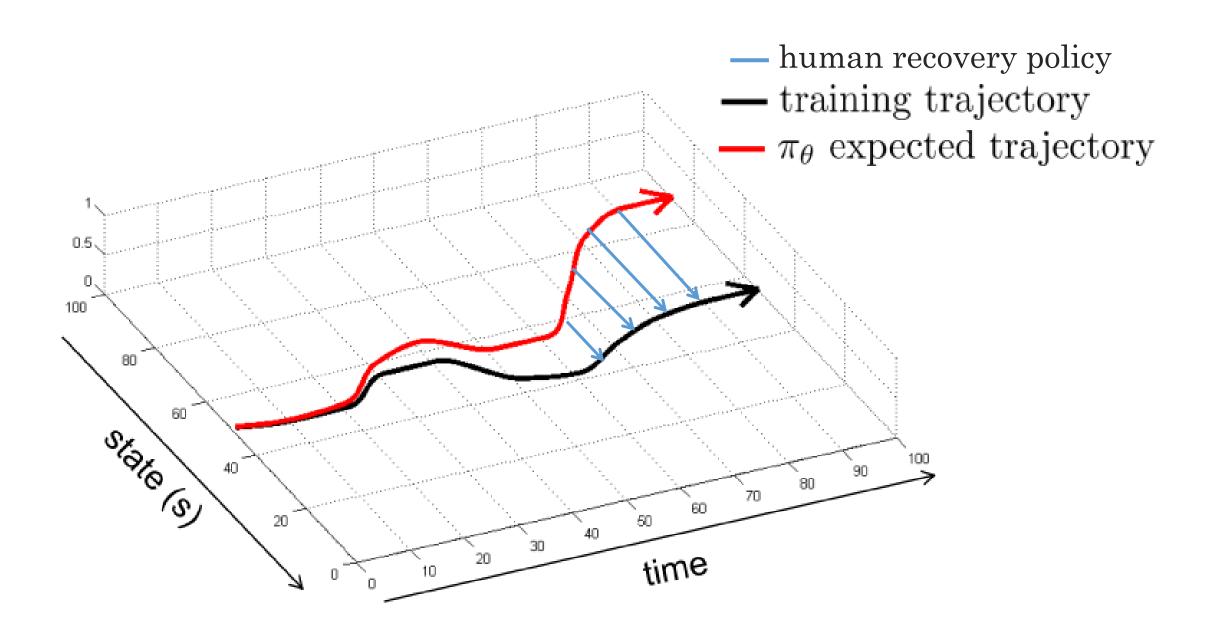
Alessandro Giusti¹, Jérôme Guzzi¹, Dan C. Cireşan¹, Fang-Lin He¹, Juan P. Rodríguez¹ Flavio Fontana², Matthias Faessler², Christian Forster² Jürgen Schmidhuber¹, Gianni Di Caro¹, Davide Scaramuzza², Luca M. Gambardella¹



Can we make it work more often?



can we make $p_{\text{data}}(\mathbf{o}_t) = p_{\pi_{\theta}}(\mathbf{o}_t)$?



DAgger Patront Aggregation

can we make $p_{\text{data}}(\mathbf{o}_t) = p_{\pi_{\theta}}(\mathbf{o}_t)$?

idea: instead of being clever about $p_{\pi_{\theta}}(\mathbf{o}_t)$, be clever about $p_{\text{data}}(\mathbf{o}_t)$!

DAgger: Dataset Aggregation

goal: collect training data from $p_{\pi_{\theta}}(\mathbf{o}_t)$ instead of $p_{\text{data}}(\mathbf{o}_t)$

how? just run $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$

but need labels \mathbf{a}_t !

- 1. train $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{a}_1, \dots, \mathbf{o}_N, \mathbf{a}_N\}$
- 2. run $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$
- 3. Ask human to label \mathcal{D}_{π} with actions \mathbf{a}_t
- 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

DAgger has very nice theoretical guarantees.

Why might it be **hard** to implement in practice?

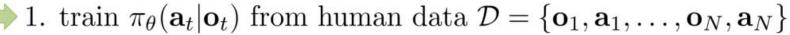
DAgger: Dataset Aggregation

goal: collect training data from $p_{\pi_{\theta}}(\mathbf{o}_t)$ instead of $p_{\text{data}}(\mathbf{o}_t)$

how? just run $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$

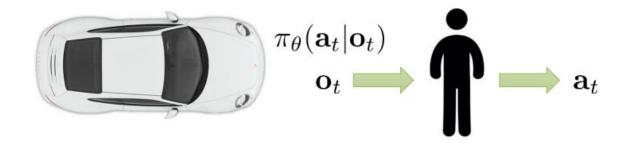
but need labels \mathbf{a}_t !

- 1. train $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{a}_1, \dots, \mathbf{o}_N, \mathbf{a}_N\}$
- 2. run $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$ 3. Ask human to label \mathcal{D}_{π} with actions \mathbf{a}_t
- 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$



- 2. run $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$ 3. Ask human to label \mathcal{D}_{π} with actions \mathbf{a}_t

 - 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$



DAgger has very nice theoretical guarantees.

Why might it be **easy** to implement in practice?

DAgger: Dataset Aggregation

goal: collect training data from $p_{\pi_{\theta}}(\mathbf{o}_t)$ instead of $p_{\text{data}}(\mathbf{o}_t)$

how? just run $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$

but need labels \mathbf{a}_t !

- 1. train $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{a}_1, \dots, \mathbf{o}_N, \mathbf{a}_N\}$
- 2. run $\pi_{\theta}(\mathbf{a}_t|\mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$ 3. Ask human to label \mathcal{D}_{π} with actions \mathbf{a}_t

 - 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

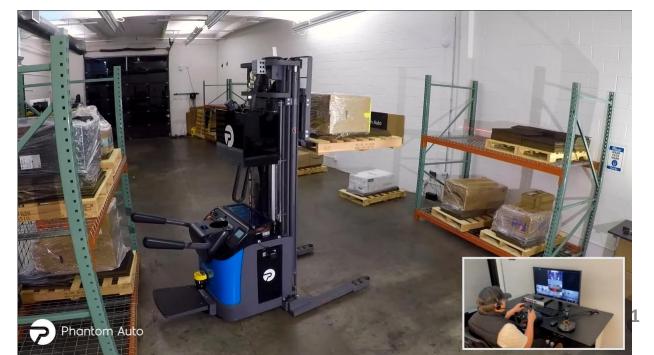
Learn from an Algorithmic Supervisor!

But we don't always have access to an algorithmic supervisor...

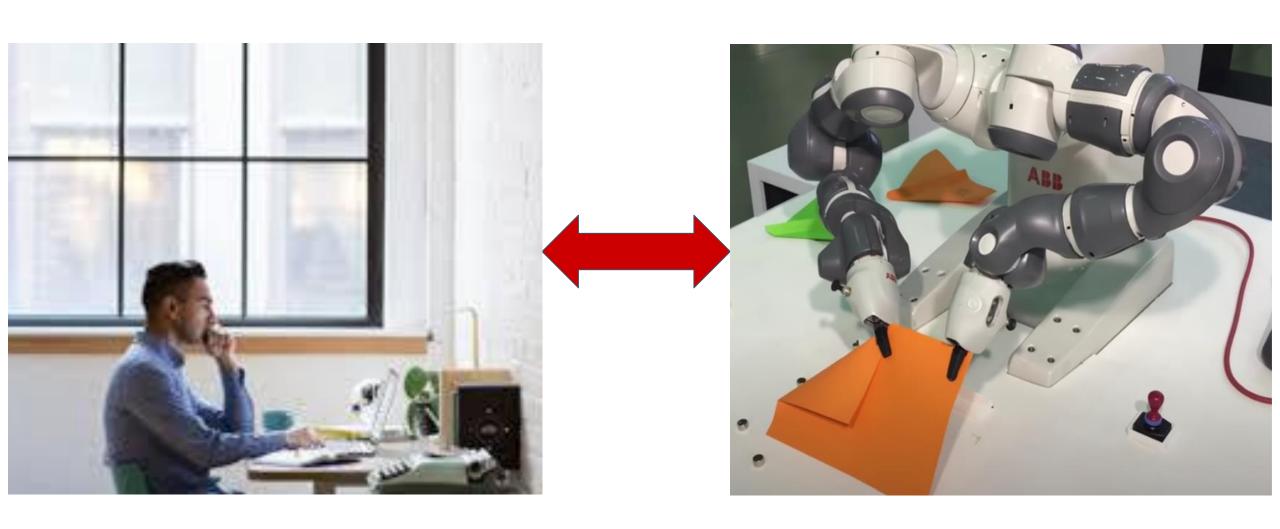
Can we make DAgger more practical when dealing with real human labeling?

ZOOX

Phantom Auto



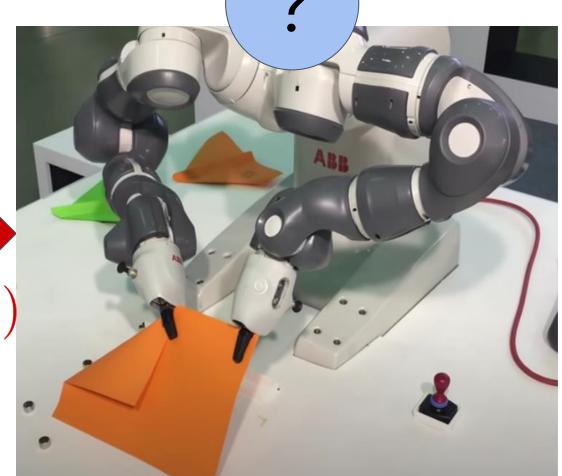
Interactive IL



Interactive IL

 $\pi_{ ext{meta}}(s)$

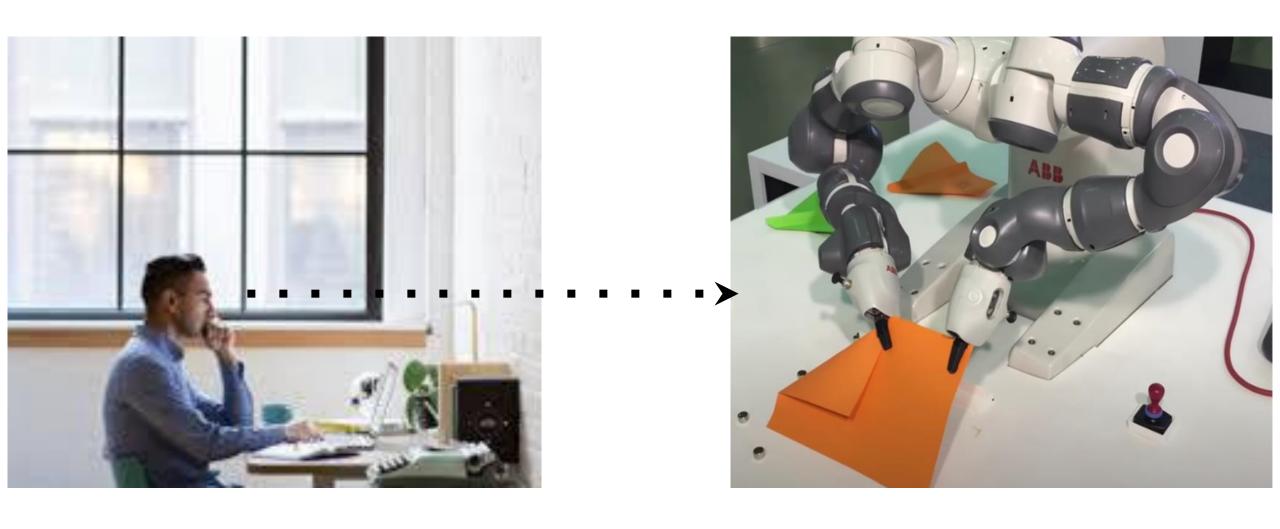
???



 $\pi_H(s)$

 $\pi_R(s)$

Human-Gated Interactive IL

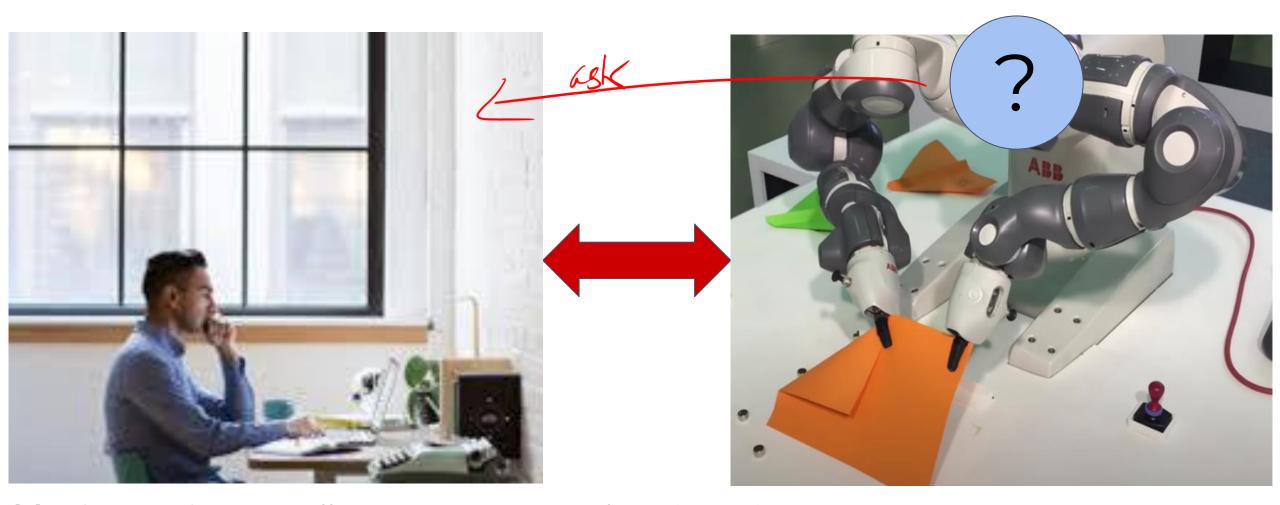


[3] M. Kelly, C. Sidrane, K. Driggs-Campbell, and M. J. Kochenderfer. HG-DAgger: Interactive Imitation Learning with Human Experts. ICRA 2019.

Human-Gated Interactive IL

[3] M. Kelly, C. Sidrane, K. Driggs-Campbell, and M. J. Kochenderfer. HG-DAgger: Interactive Imitation Learning with Human Experts. ICRA 2019.

Robot-Gated Interactive IL



[4] J. Zhang, K. Cho. Query-Efficient Imitation Learning for End-to-End Autonomous Driving. AAAI 2017. [5] K. Menda, K. Driggs-Campbell, M. Kochenderfer. EnsembleDAgger: A Bayesian Approach to Safe Imitation Learning. IROS 2019.

When should a robot ask for help?

Novel (and risky)

When should a robot ask for help?

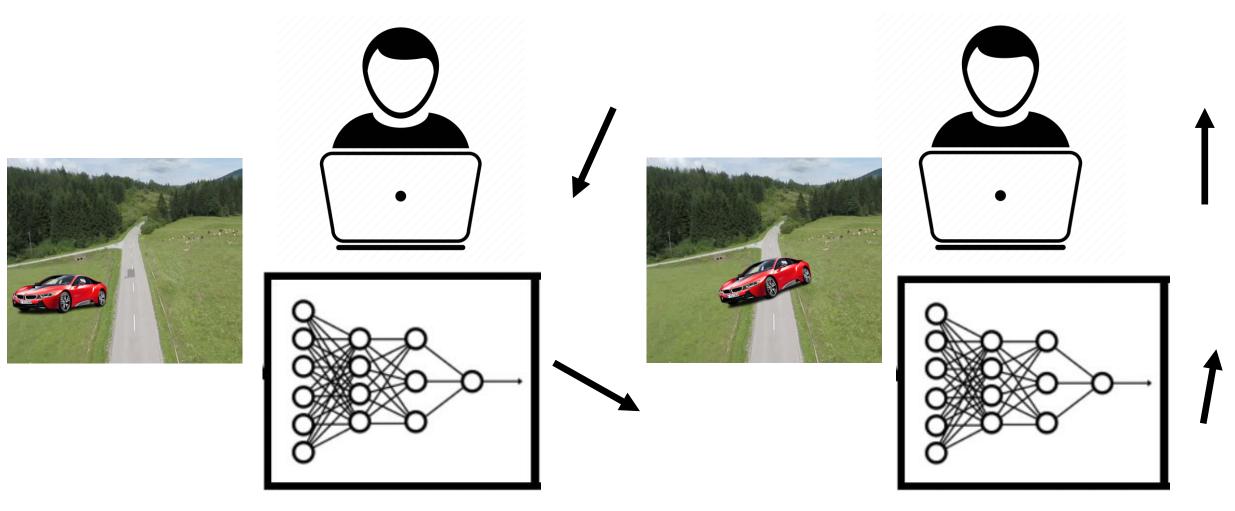
Novel (and risky)

Risky (but not novel)

Novelty Estimation

Ensemble

Novelty Estimation: Supervisor Mode



Risk Estimation

$$Q_{\mathcal{G}}^{\pi_r}(s_t, a_t) = \mathbb{E}_{\pi_r} \left[\sum_{t'=t}^{\infty} \gamma^{t'-t} \mathbb{1}_{\mathcal{G}}(s_t') | s_t, a_t \right]$$

Risk Estimation

$$Q_{\mathcal{G}}^{\pi_r}(s_t, a_t) = \mathbb{E}_{\pi_r} \left[\sum_{t'=t}^{\infty} \gamma^{t'-t} \mathbb{1}_{\mathcal{G}}(s_t') | s_t, a_t \right]$$

$$\operatorname{Risk}^{\pi_r}(s,a) = 1 - \hat{Q}_{\phi,\mathcal{G}}^{\pi_r}(s,a)$$

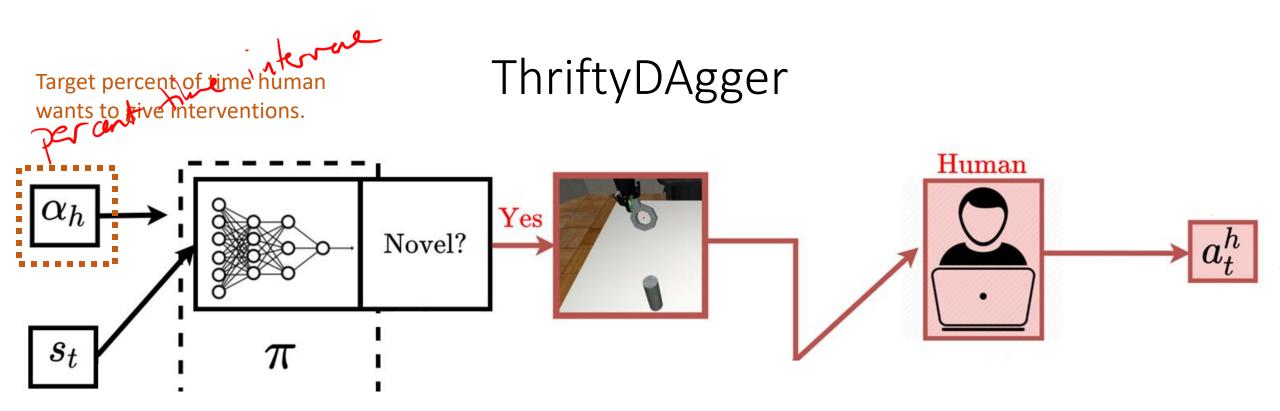
Risk Estimation

$$Q_{\mathcal{G}}^{\pi_r}(s_t, a_t) = \mathbb{E}_{\pi_r} \left[\sum_{t'=t}^{\infty} \gamma^{t'-t} \mathbb{1}_{\mathcal{G}}(s_t') | s_t, a_t \right]$$

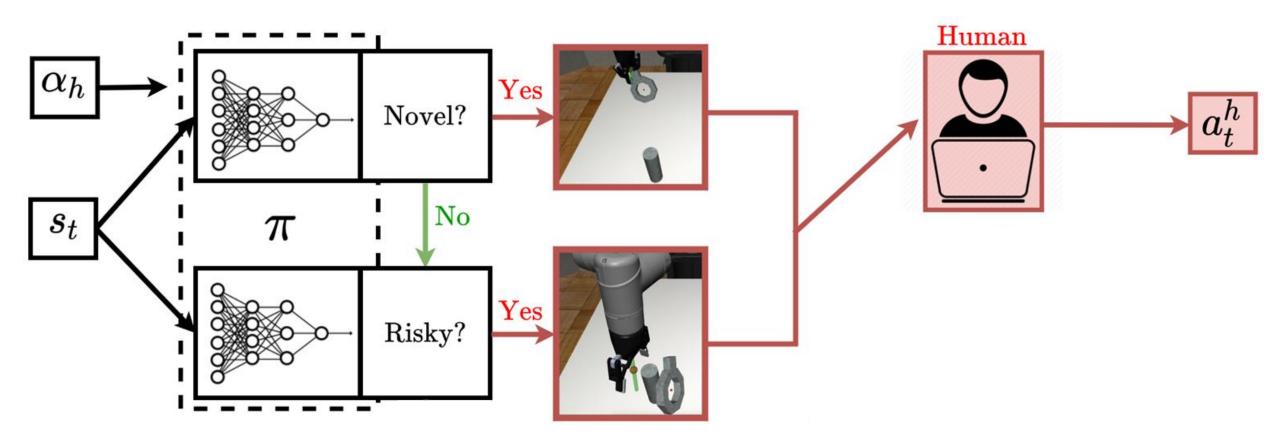
$$\operatorname{Risk}^{\pi_r}(s,a) = 1 - \hat{Q}_{\phi,\mathcal{G}}^{\pi_r}(s,a)$$

$$J_{\mathcal{G}}^{Q}(s_t, a_t, s_{t+1}; \phi) =$$

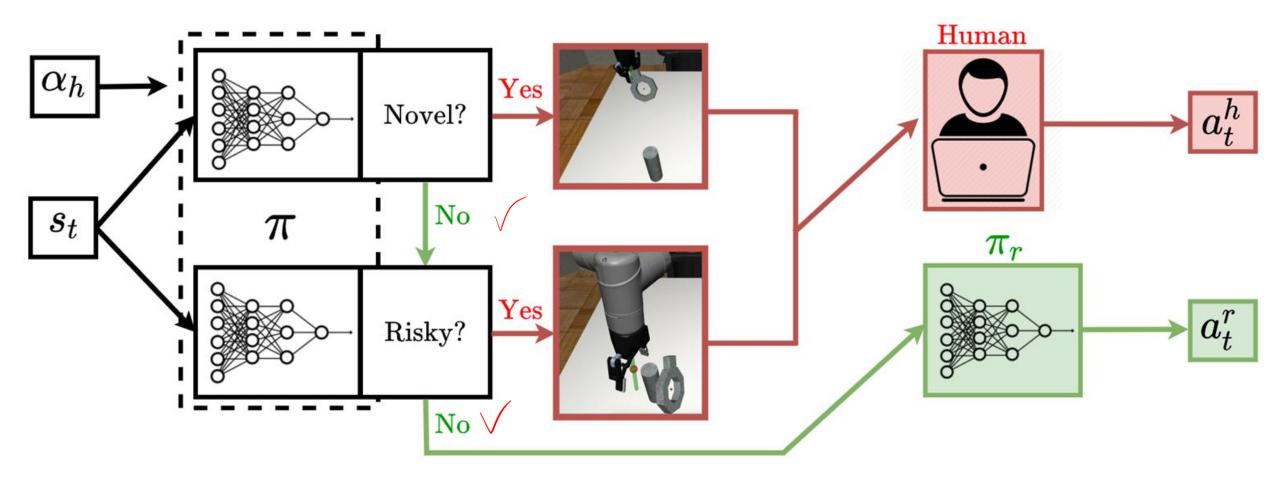
$$\frac{1}{2} \left(\hat{Q}_{\phi,\mathcal{G}}^{\pi_r}(s_t, a_t) - (\mathbb{1}_{\mathcal{G}}(s_t) + (1 - \mathbb{1}_{\mathcal{G}}(s_t)) \gamma \hat{Q}_{\phi,\mathcal{G}}^{\pi_r}(s_{t+1}, \pi_r(s_{t+1})) \right)^2$$

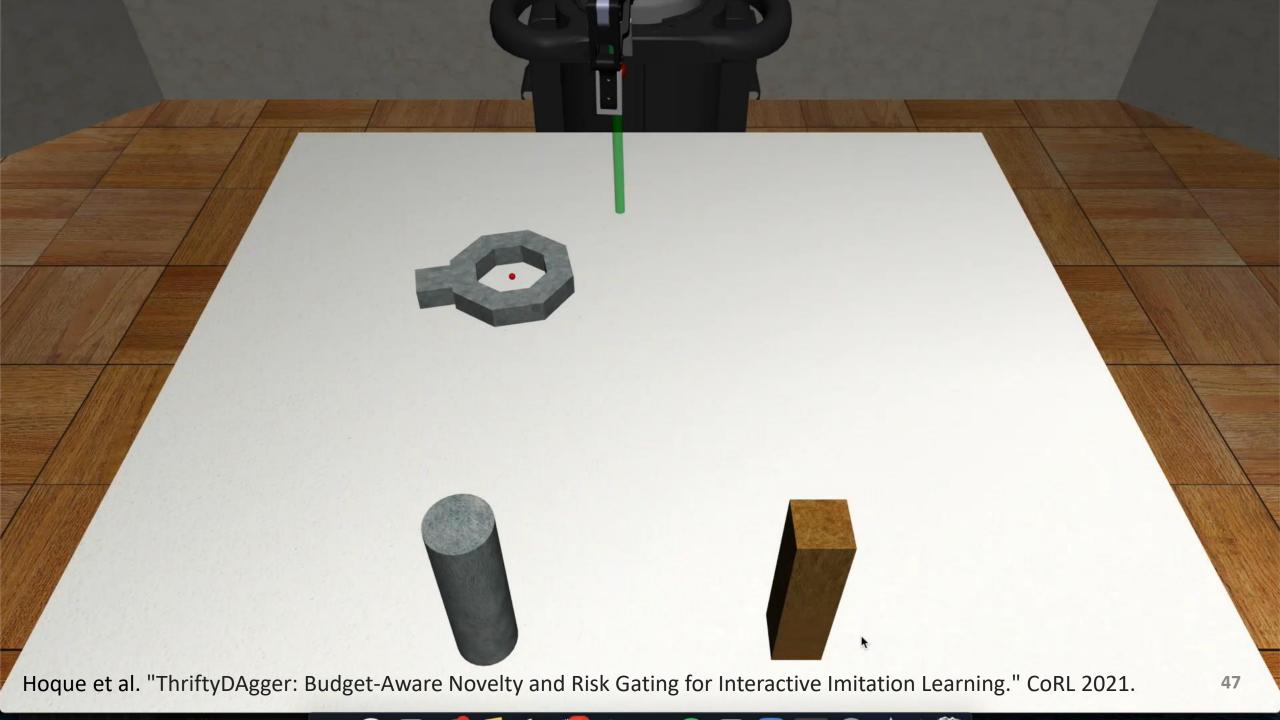


ThriftyDAgger

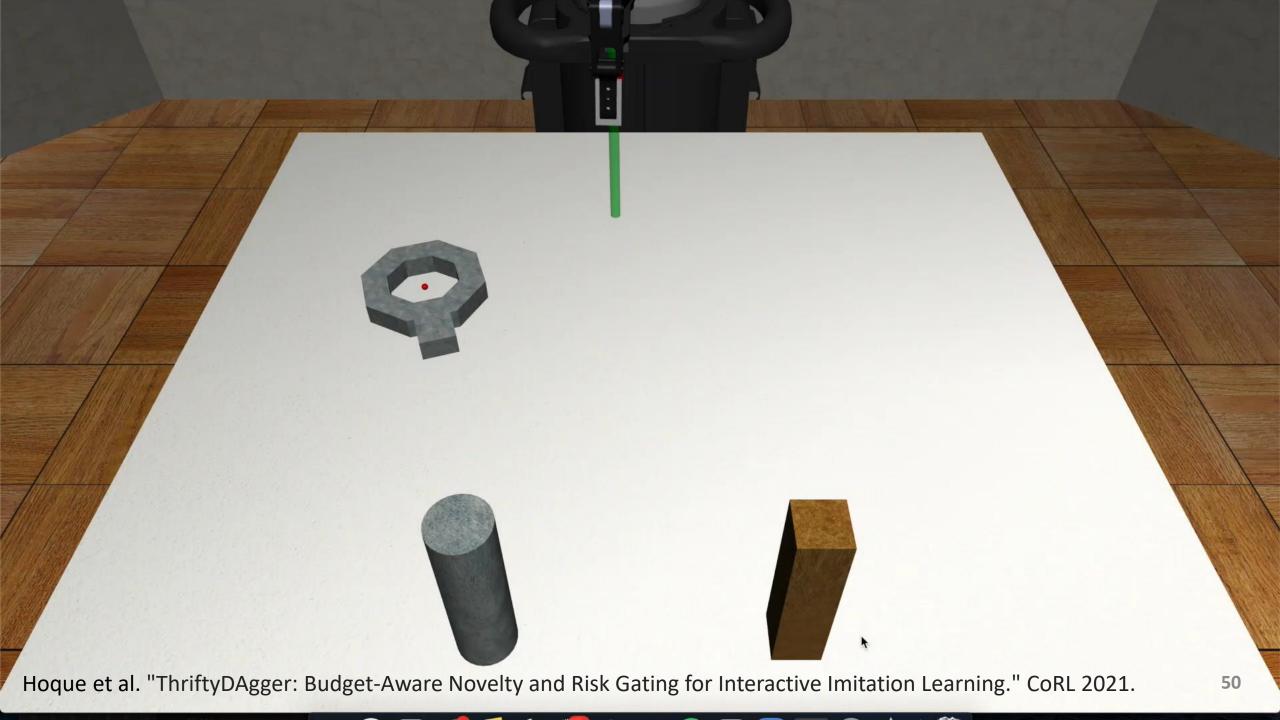


ThriftyDAgger

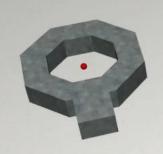


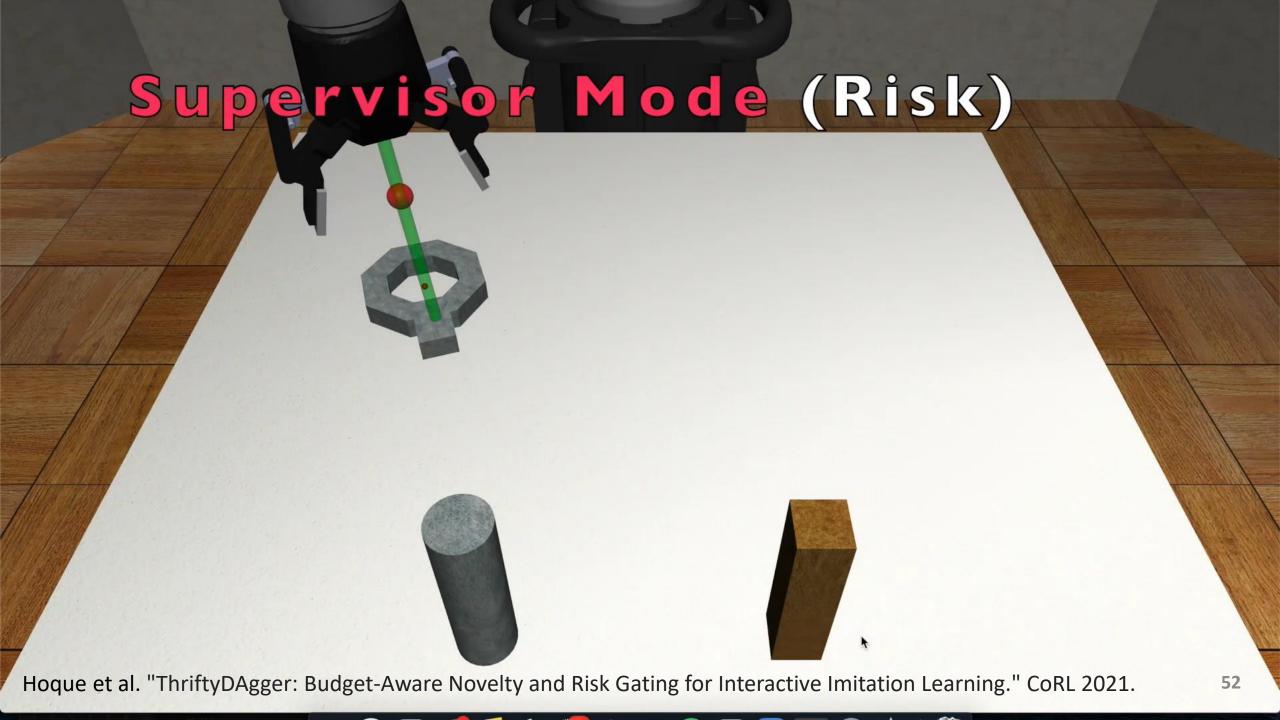


Autonomous Mode

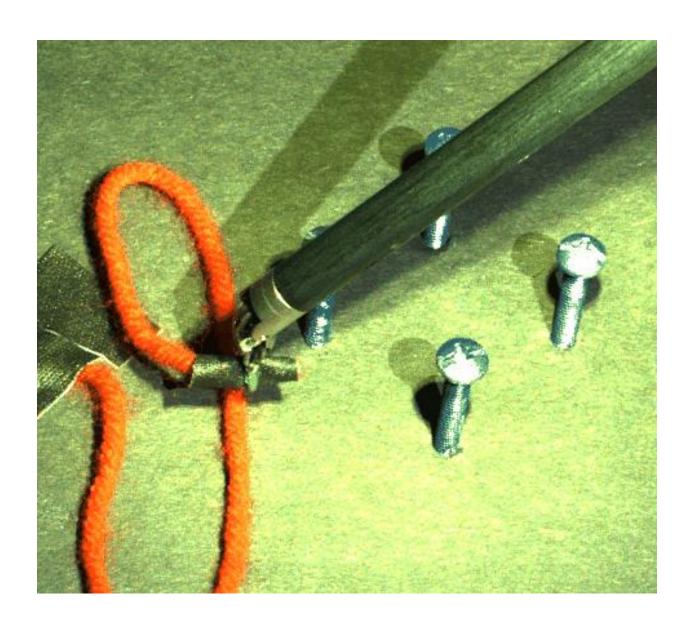


Supervisor Mode (Risk)

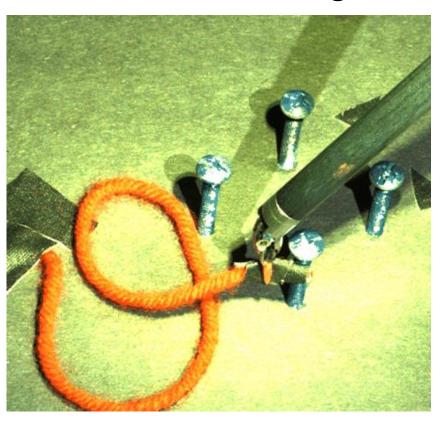




Human Demonstration

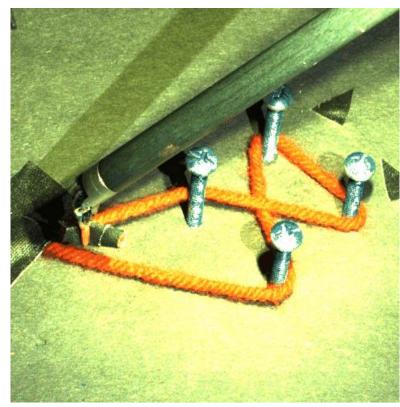


Behavior Cloning



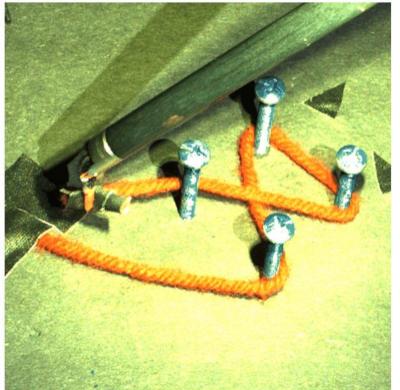
Behavior Cloning

ThriftyDAgger (autonomous)

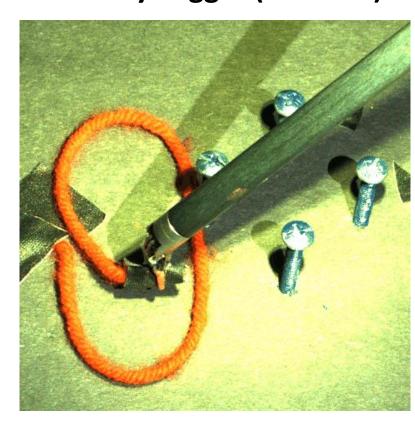


Behavior Cloning

ThriftyDAgger (autonomous)



ThriftyDAgger (+human)

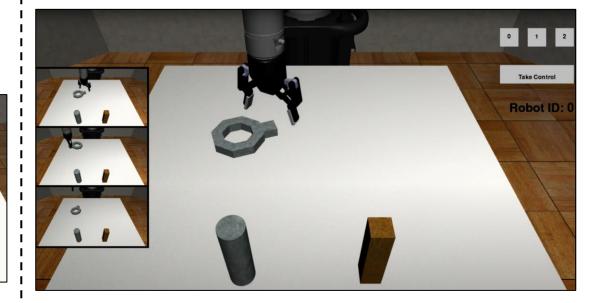


User Study

N=10 subjects each control 3 robots in simulation.

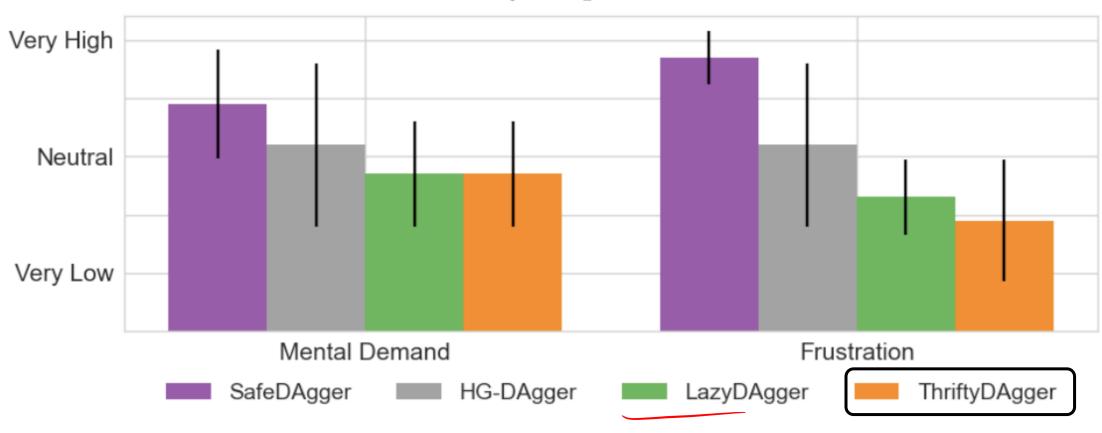
Robot-Gated Memory: Non-Match Memory: Match

Human-Gated



ThriftyDAgger Qualitative Results

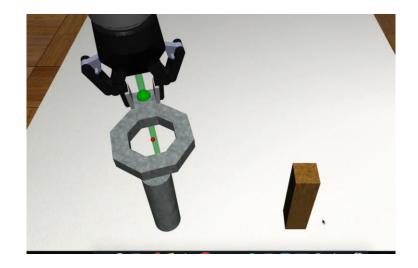
Survey Responses



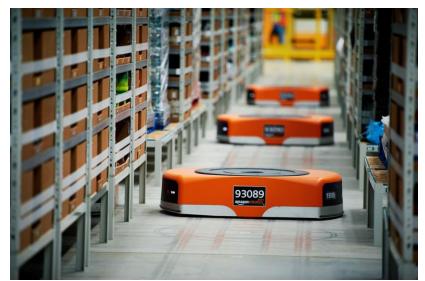
User Study Quantitative Results

ThriftyDAgger had

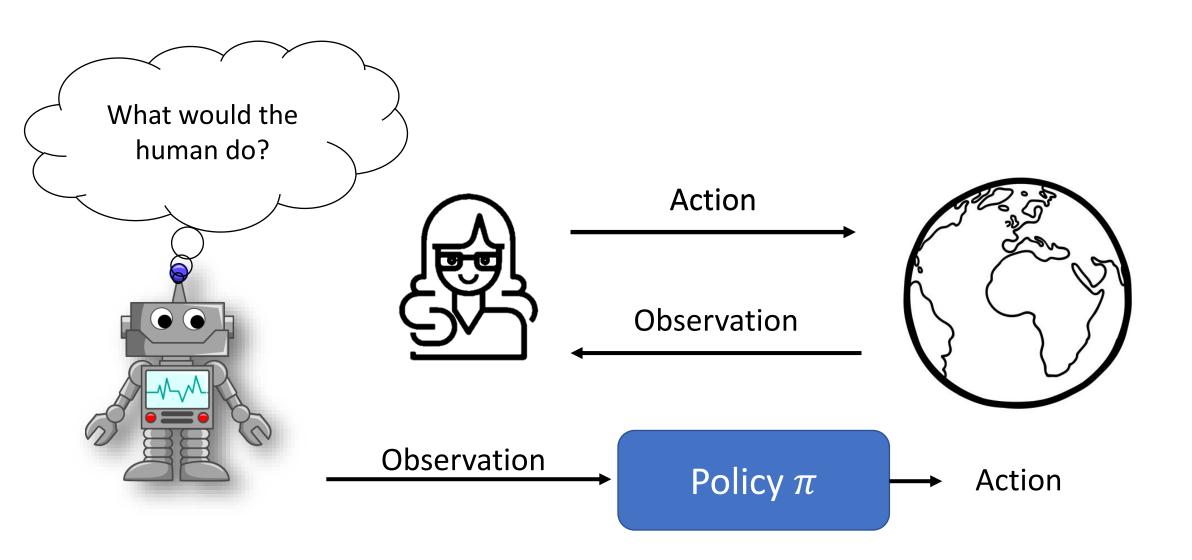
- 21% fewer human interventions
- 57% more concentration pairs found
- 80% more throughput



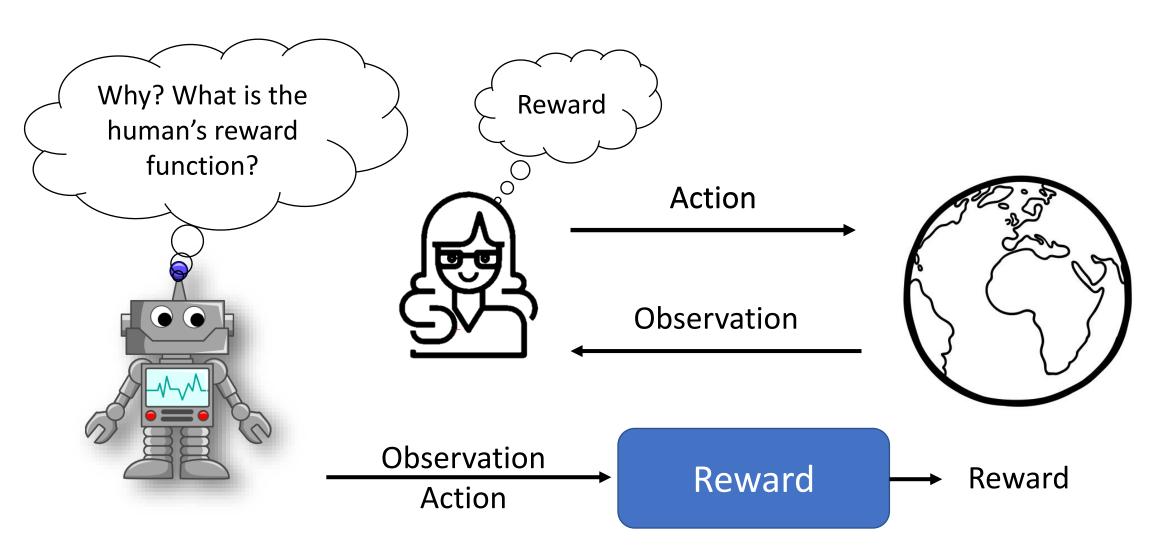
Lots of potential applications of human interaction with robot fleets!



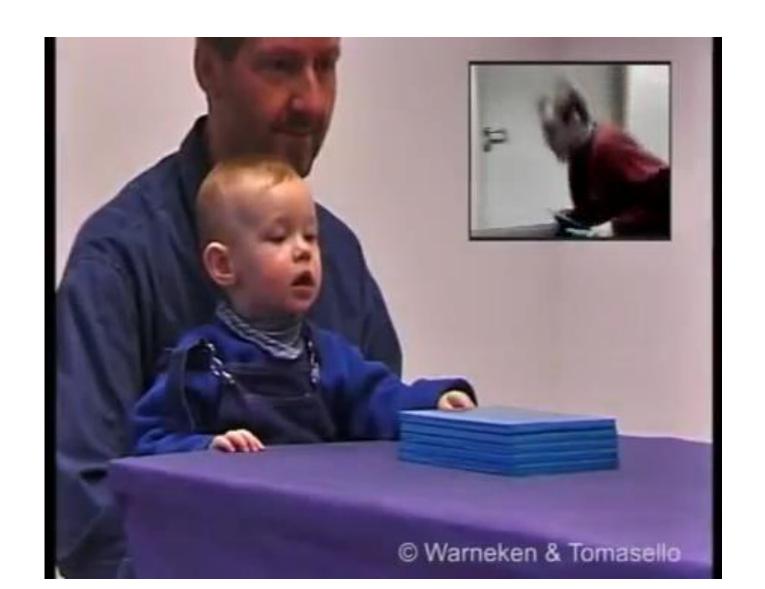
Behavioral Cloning



Reward Learning (Inverse Reinforcement Learning)



Human Intent Inference

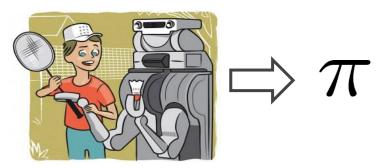


Optimal Control Inverse Reinforcement Learning

- Given
 - MDP without a reward function
 - $_{\circ}$ Demonstrations from an optimal policy π^{*}
- Recover the reward function R that makes π^* optimal

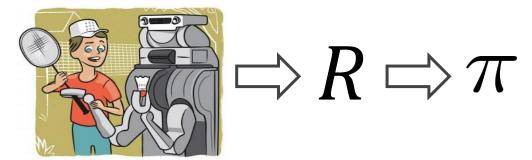
Imitation Learning

Behavioral Cloning



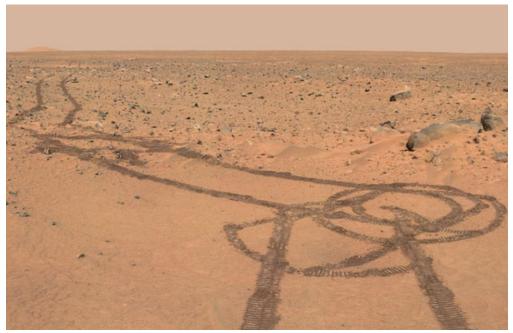
- Answers the "How?" question
- Mimic the demonstrator
- Learn mapping from states to actions
- Computationally efficient
- Compounding errors

Inverse Reinforcement Learning

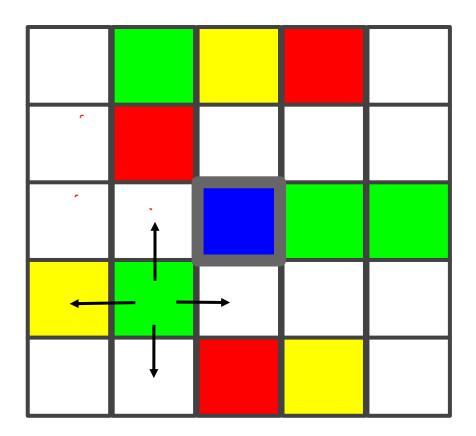


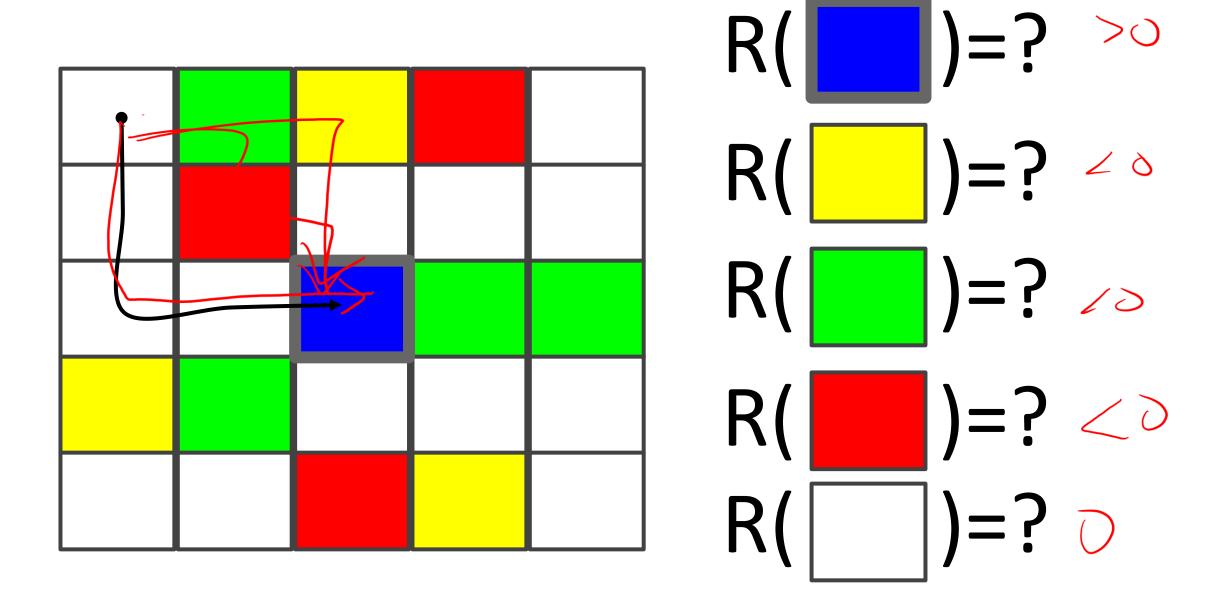
- Answers the "Why?" question
- Explain the demonstrator's behavior
- Learn a reward function capturing the demonstrator's intent
- Can require lots of data and compute
- Better generalization. Can recover from arbitrary states

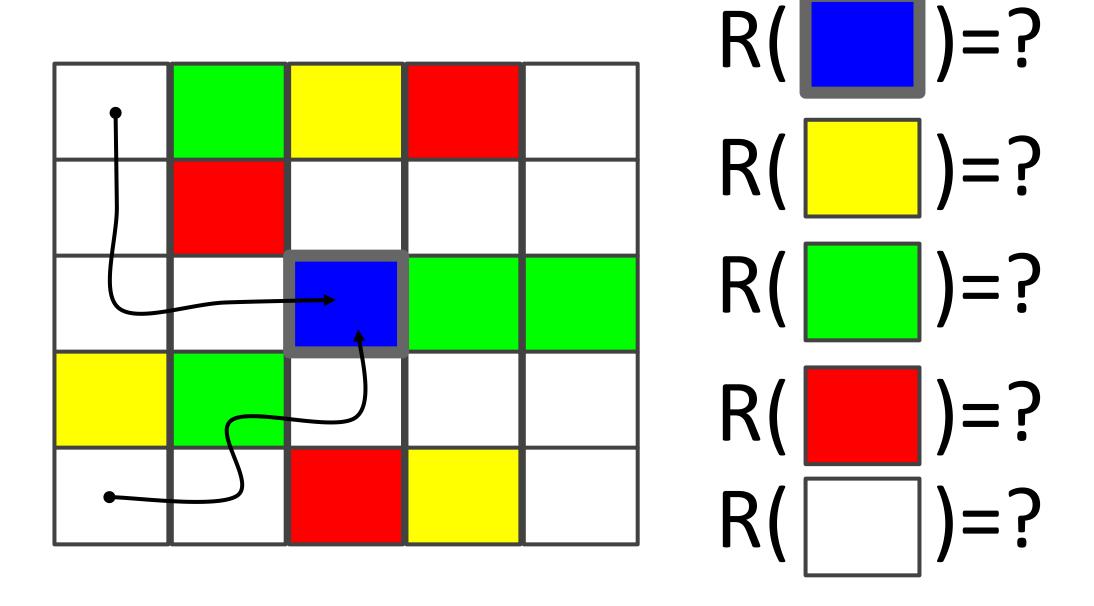
IRL Example: Teaching a robot to navigate through demonstrations

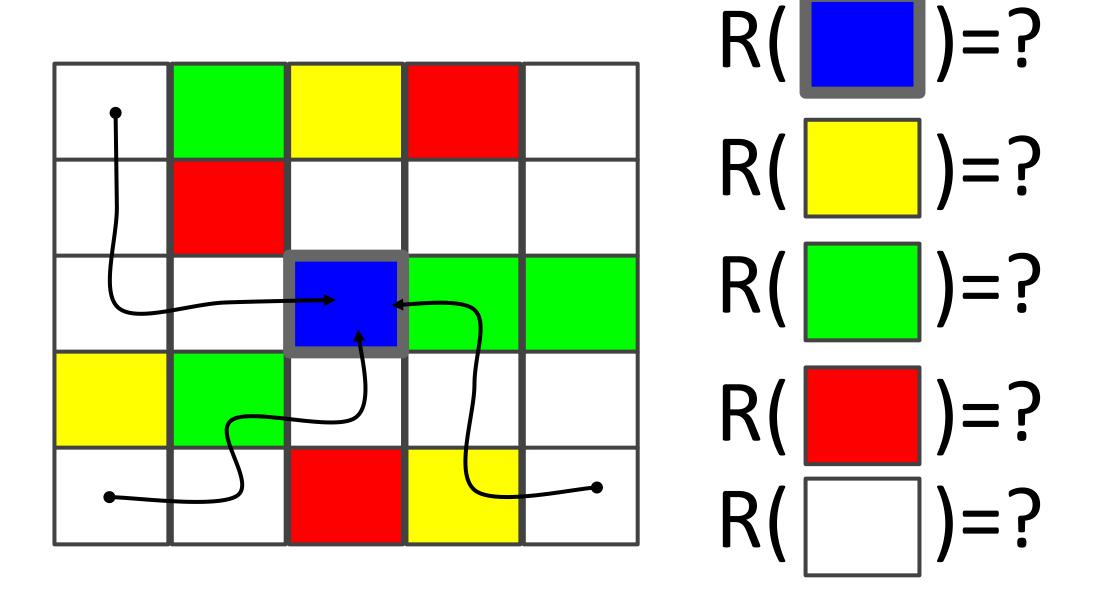


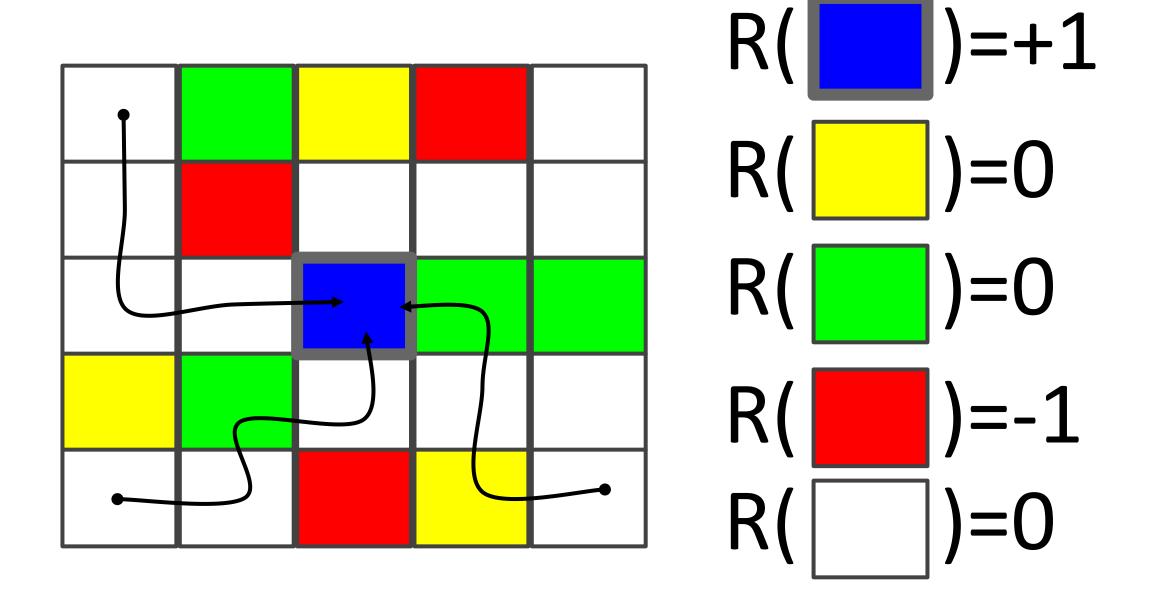
Toy version



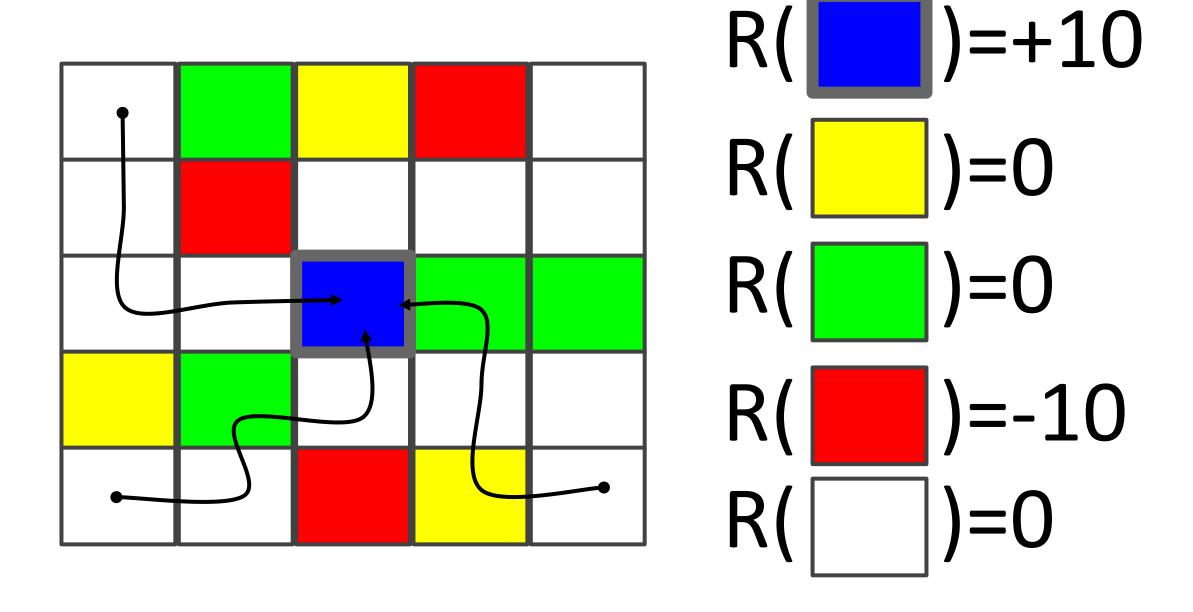




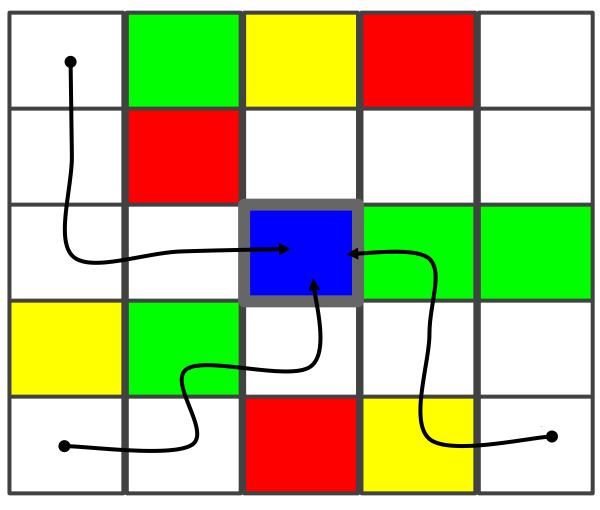




What is the reward?



What is the reward (1) = +10

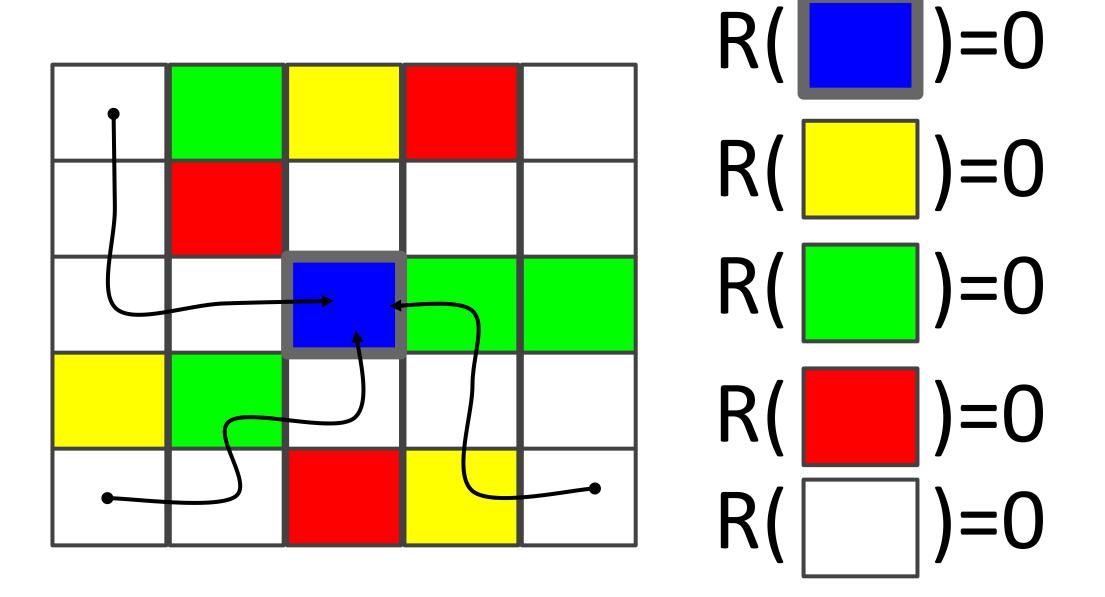


$$R(|||)=-1$$

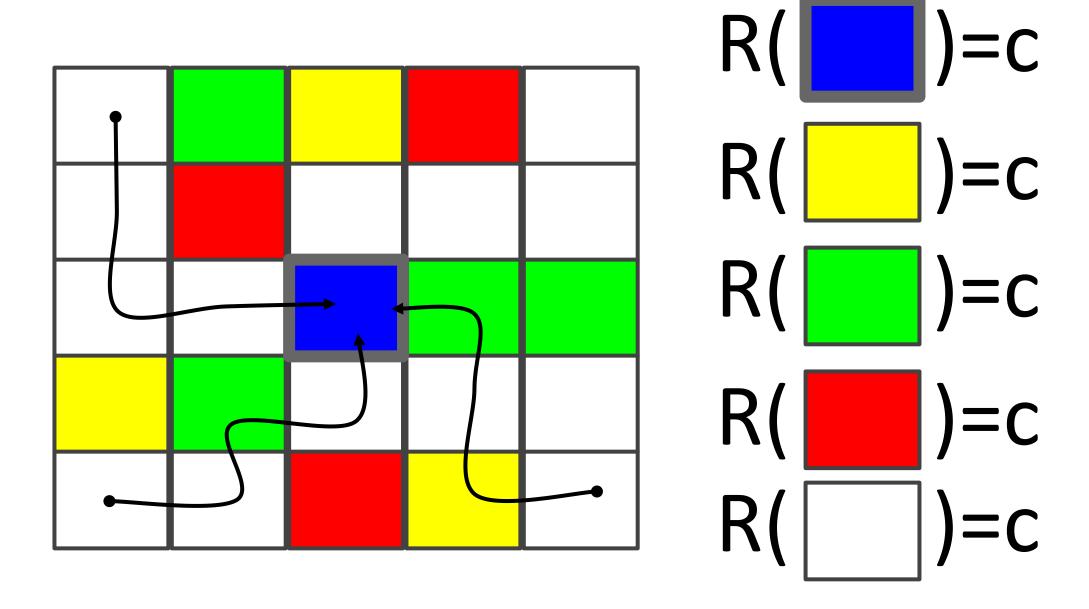
$$R(||||)=-1$$

$$R(=)=-10$$

What is the reward?



What is the reward?



Inverse Reinforcement Learning Formalism

- Given
 - MDP without a reward function
 - \circ Demonstrations from an optimal policy π^*
- Recover a reward function R that makes π^* optimal

- III-Posed Problem
 - $_{\circ}$ Infinite number of reward functions that can make π^{*} optimal
 - Trivial all zero reward
 - Constant reward
 - aR + c (positive scaling a>0, and affine shifts)

Basic IRL Algorithm

- Start with demonstrations, D
- Guess initial reward function R_0
- $\hat{R} = R_0$

Loop:

- $_{\circ}$ Solve for optimal policy $\pi_{\widehat{R}}^{*}$
- $_{\circ}$ Compare D and $\pi_{\widehat{R}}^{*}$
- \circ Update \widehat{R} to try and make D and $\pi_{\widehat{R}}^*$ more similar

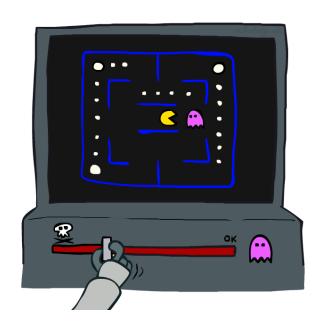
Flashback: Approximate Q-Learning

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

Q-learning with linear Q-functions:

$$\begin{aligned} & \text{transition } = (s, a, r, s') \\ & \text{difference} = \left[r + \gamma \max_{a'} Q(s', a')\right] - Q(s, a) \\ & Q(s, a) \leftarrow Q(s, a) + \alpha \text{ [difference]} \end{aligned} \quad \begin{aligned} & \text{Exact Q's} \\ & w_i \leftarrow w_i + \alpha \text{ [difference]} f_i(s, a) \end{aligned} \quad \text{Approximate Q's} \end{aligned}$$

- Intuitive interpretation:
 - Adjust weights of active features
 - E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state's features
- Formal justification: online least squares



Feature count matching

- Assume the reward function is a linear combination of features:
$$R(s) = \mathbf{w}^T \phi(s)$$

 Value function becomes linear combination of (discounted) feature expectations:

$$V_R^{\pi} = \mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^t R(s_t) \right]$$

Abbeel and Ng, "Apprenticeship learning via inverse reinforcement learning." ICML, 2004.

Feature count matching

Assume the reward function is a linear combination of features:

$$R(s) = \mathbf{w}^T \phi(s)$$

 Value function becomes linear combination of (discounted) feature expectations:

$$V_R^{\pi} = \mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^t \hat{\mathbf{w}}^t \phi(s_t) \right]$$

Feature count matching

Assume the reward function is a linear combination of features:

$$R(s) = \mathbf{w}^T \phi(s)$$

Value function becomes linear combination of (discounted) feature expectations:

$$V_R^{\pi} = \mathbf{w}^T \mathbb{E}_{\pi} \left[\sum_{t=0}^{\infty} \gamma^t \phi(s_t) \right] = \mathbf{w}^T \mu_{\pi}$$

Abbeel and Ng, "Apprenticeship learning via inverse reinforcement learning." ICML, 2004.

Inverse reinforcement learning: feature matching (Abbeel and Ng 2004, Syed and Schapire 2007)

• If $||\mathbf{w}||_1 \leq$ 1, then $|x^\top y| \leq ||x||_1 ||y||_\infty$ $V_R^{\pi^*} - V_R^{\pi_{\mathrm{robot}}} = \mathbf{w}^T (\mu_{\pi^*} - \mu_{\pi_{\mathrm{robot}}})$ $\leq \|\mu_{\pi^*} - \mu_{\pi_{\mathrm{robot}}}\|_\infty$

- If feature expectations match, then expected returns are identical.
- Idea: Can we update the reward guess \widehat{R} so the feature counts get closer?

Problem: Many different policies can lead to same expected feature counts

Maximum Entropy IRL (Ziebart et al. 2008)

- Collect M demonstrations $D = \{\tau_1, ..., \tau_M\}$
- Initialize reward weights w
- Loop

- Solve for (soft) optimal policy $\pi(a|s)$ via Value Iteration
- Solve for expected feature counts of $\pi(a|s)$
- Compute weight update

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha(\mu_D - \mu_{\pi})$$

$$P(\tau) = \frac{e^{R_W(\tau)}}{Z}$$

$$R(s) = \mathbf{w}^T \phi(s)$$