
Deep Learning

CS 4300/6300

Daniel Brown

1[Slide content from Vivek Srikumar]

Success stories

2

Object recognition

3

Images from Zoph, Barret, et al. "Learning transferable
architectures for scalable image recognition." Proceedings of
the IEEE conference on computer vision and pattern
recognition. 2018.

Superhuman speech recognition

4

several people are on a dock in the water .

black and white dog jumps over bar

Images and captions credit: Andrey Karpathy

Captions generated by a neural network

And many more successes

You have heard about them and likely used them

6

ChatGPT Google Translate Siri

A class of tools impacting diverse domains

7

Why deep learning?

8

Machine learning is easy

We just need a lot of data and learning will be
successful…

… provided we have the right features

9

Even these functions can be made linear

10

These points are not separable in 1-dimension by a line

What is a one-dimensional line, by the way?

x

Even these functions can be made linear

The trick: Change the representation

11

These points are not separable in 1-dimension by a line

What is a one-dimensional line, by the way?

x

The blown up feature space

The trick: Use feature conjunctions

12

Transform points: Represent each point x in 2 dimensions by (x, x2)

x

The blown up feature space

The trick: Use feature conjunctions

13

Transform points: Represent each point x in 2 dimensions by (x, x2)

x

x2

The blown up feature space

The trick: Use feature conjunctions

14

Transform points: Represent each point x in 2 dimensions by (x, x2)

-2

(-2, 4)

x

x2

The blown up feature space

The trick: Use feature conjunctions

15

Transform points: Represent each point x in 2 dimensions by (x, x2)

Now the data is linearly separable in this space!

x

x2

A toy example

16

We cannot separate the blue circles from the green triangles

Image from Goodfellow et al “Deep Learning”

A toy example

17

We cannot separate the blue circles from the green triangles
in the original representation

But by going to polar coordinates, the separator is a line

Image from Goodfellow et al “Deep Learning”

A toy example

18

We cannot separate the blue circles from the green triangles
in the original representation

But by going to polar coordinates, the separator is a line

What if we did not know about polar
coordinates? Can a learner discover
this transformation from data?

Image from Goodfellow et al “Deep Learning”

What is deep learning?

19

What is deep learning?

A diverse collection of ideas that are centered around the
use of neural networks for machine learning

Some common design patterns
1. Learned distributed representations

2. Composing layers of neurons and training them end-to-
end

3. “Differentiable compute”, which allows the use of
backpropagation

20

Hierarchy of learned representations

Rather than hand-crafted representations, make feature extraction into a
learning problem

Optimize for the final task and the features together

Create a hierarchy of layers of increasing abstraction

Why should this work?

21

— A possibly apocryphal quote from Yann
Le Cun about not hand-defining features

“Because gradient descent is better than you”

A deep learning model illustrated

22
Image from Goodfellow et al “Deep Learning”, originally from Zeigler & Fergus (2014)

Deep learning in context

23

Input

Output

Hand written
program

Traditional programs are hand written.

A very successful agenda that gave birth to the
computer revolution.

Success stories: Operating systems, the
Internet, web browsers, etc

Deep learning in context

24

Input

Output

Hand written
program

Input

Output

Hand
designed
features

Feature-to-
output

mapping

Traditional machine learning:

Hand designed features of inputs
are given to a learner that learns
to map features to inputs

(the blue part is learned)

Deep learning in context

25

Input

Output

Hand written
program

Input

Output

Hand
designed
features

Feature-to-
output

mapping

Input

Output

Features

Feature-to-
output

mapping

Shallow representation learning:

The hand-designed features are also part
of the learned component (blue)

Deep learning in context

26

Input

Output

Hand written
program

Input

Output

Hand
designed
features

Feature-to-
output

mapping

Input

Output

Features

Feature-to-
output

mapping

Input

Output

Simple
features

Feature-to-
output

mapping

Many layers
of increasingly

abstract
features

Deep representation learning: Layers of
representations are learned. These are of increasing
abstraction

A neural network

A function that converts inputs to outputs defined by
a directed acyclic graph

– Nodes organized in layers, correspond to neurons

– Edges carry output of one neuron to another,
associated with weights

To define a neural network, we need to specify:
– The structure of the graph

• How many nodes, the connectivity

– The activation function on each node

– The edge weights

27

A neural network

A function that converts inputs to outputs defined by
a directed acyclic graph

– Nodes organized in layers, correspond to neurons

– Edges carry output of one neuron to another,
associated with weights

To define a neural network, we need to specify:
– The structure of the graph

• How many nodes, the connectivity

– The activation function on each node

– The edge weights

28

Called the architecture
of the network
Typically predefined,
part of the design of
the classifier

Learned from data

Input

Hidden

Output

wij
2

wij
1

A neural network

A function that converts inputs to outputs defined by
a directed acyclic graph

– Nodes organized in layers, correspond to neurons

– Edges carry output of one neuron to another,
associated with weights

To define a neural network, we need to specify:
– The structure of the graph

• How many nodes, the connectivity

– The activation function on each node

– The edge weights

29

Input

Hidden

Output

wij
2

wij
1

A neural network

A function that converts inputs to outputs defined by
a directed acyclic graph

– Nodes organized in layers, correspond to neurons

– Edges carry output of one neuron to another,
associated with weights

To define a neural network, we need to specify:
– The structure of the graph

• How many nodes, the connectivity

– The activation function on each node

– The edge weights

30

Called the architecture of the
network
Typically predefined, part of
the design of the classifier

Learned from data

Input

Hidden

Output

wij
2

wij
1

Computation graphs

A language for constructing deep neural networks and
loss functions

– A way to think about differentiable compute

Key ideas:
– We can represent functions as graphs

– We can dynamically generate these graphs if necessary

– We can define algorithms over these graphs that map to
learning and prediction
• Prediction via the forward pass

• Learning via gradients computed using the backward pass

31

An example two layer neural network

32

𝐡 = tanh 𝐖𝐱 + 𝐛
𝒚 = 𝐕𝐡 + 𝐚

An example two layer neural network

33

𝐡 = tanh 𝐖𝐱 + 𝐛
𝒚 = 𝐕𝐡 + 𝐚

𝐖 𝐱

𝐟 𝐌, 𝐯 = 𝐌𝐯 𝐛

𝐟 𝐮, 𝐯 = 𝐮 + 𝐯

𝐡
𝐟 𝐯 = tanh(𝐯)

An example two layer neural network

34

𝐡 = tanh 𝐖𝐱 + 𝐛
𝒚 = 𝐕𝐡 + 𝐚

𝐖 𝐱

𝐟 𝐌, 𝐯 = 𝐌𝐯 𝐛

𝐟 𝐮, 𝐯 = 𝐮 + 𝐯

𝐡
𝐟 𝐯 = tanh(𝐯)

An example two layer neural network

35

𝐡 = tanh 𝐖𝐱 + 𝐛
𝒚 = 𝐕𝐡 + 𝐚

𝐖 𝐱

𝐟 𝐌, 𝐯 = 𝐌𝐯 𝐛

𝐟 𝐮, 𝐯 = 𝐮 + 𝐯

𝐡
𝐟 𝐯 = tanh(𝐯)

𝐕

𝐟 𝐌, 𝐯 = 𝐌𝐯 𝐚

𝐲𝐟 𝐮, 𝐯 = 𝐮 + 𝐯

Two algorithmic questions

1. Forward propagation
– Given inputs to the graph, compute the value of the

function expressed by the graph

– Something to think about: Given a node, can we say which
nodes are inputs? Which nodes are outputs?

2. Backpropagation
– After computing the function value for an input, compute

the gradient of the function at that input

– Or equivalently: How does the output change if I make a
small change to the input?

36

Forward propagation

Given a computation graph G and values of its input
nodes:

For each node in the graph, in topological order:

Compute the value of that node

Why topological order: Ensures that children are
computed before parents.

37

Two algorithmic questions

1. Forward propagation
– Given inputs to the graph, compute the value of the

function expressed by the graph

– Something to think about: Given a node, can we say which
nodes are inputs? Which nodes are outputs?

2. Backpropagation
– After computing the function value for an input, compute

the gradient of the function at that input

– Or equivalently: How does the output change if I make a
small change to the input?

38

Backpropagation, in general

After we have done the forward propagation,

Loop over the nodes in reverse topological order
starting with a final goal node

– Compute derivatives of final goal node value with respect
to each edge’s tail node
• If there are multiple outgoing edges from a node, sum up all the

derivatives for the edges

– Save the computed gradient so that the next time we need
it, it doesn’t need to be re-computed

39

The standard process of training neural networks

1. Design the graph that defines the computation you want

2. Initialize the graph
Either randomly, or with pre-trained parameters

3. Iterate over example (or mini-batches of examples):
1. Run the forward pass to calculate the result of the computation using the current parameters

2. Define the loss for the network over the current example

 Characterizes the idea of “how bad is the result that was just computed”

3. Compute the gradient of the loss using backpropagation

4. Update the parameters

40

The standard process of training neural networks

1. Design the graph that defines the computation you want

2. Initialize the graph
Either randomly, or with pre-trained parameters

3. Iterate over example (or mini-batches of examples):
1. Run the forward pass to calculate the result of the computation using the current parameters

2. Define the loss for the network over the current example

 Characterizes the idea of “how bad is the result that was just computed”

3. Compute the gradient of the loss using backpropagation

4. Update the parameters

41

The standard process of training neural networks

1. Design the graph that defines the computation you want

2. Initialize the graph
Either randomly, or with pre-trained parameters

3. Iterate over example (or mini-batches of examples):
1. Run the forward pass to calculate the result of the computation using the current parameters

2. Define the loss for the network over the current example

 Characterizes the idea of “how bad is the result that was just computed”

3. Compute the gradient of the loss using backpropagation

4. Update the parameters

42

The standard process of training neural networks

1. Design the graph that defines the computation you want

2. Initialize the graph
Either randomly, or with pre-trained parameters

3. Iterate over example (or mini-batches of examples):
1. Run the forward pass to calculate the result of the computation using the current parameters

2. Define the loss for the network over the current example

 Characterizes the idea of “how bad is the result that was just computed”

3. Compute the gradient of the loss using backpropagation

4. Update the parameters

43

The standard process of training neural networks

1. Design the graph that defines the computation you want

2. Initialize the graph
Either randomly, or with pre-trained parameters

3. Iterate over example (or mini-batches of examples):
1. Run the forward pass to calculate the result of the computation using the current parameters

2. Define the loss for the network over the current example

 Characterizes the idea of “how bad is the result that was just computed”

3. Compute the gradient of the loss using backpropagation

4. Update the parameters

44

The standard process of training neural networks

1. Design the graph that defines the computation you want

2. Initialize the graph
Either randomly, or with pre-trained parameters

3. Iterate over example (or mini-batches of examples):
1. Run the forward pass to calculate the result of the computation using the current parameters

2. Define the loss for the network over the current example

 Characterizes the idea of “how bad is the result that was just computed”

3. Compute the gradient of the loss using backpropagation

4. Update the parameters

45

Neural networks are data-driven programs

The forward pass allows us to compute the result of
computations on examples

The backward pass over loss functions allows us to compute
the update to the parameters that produced the loss

Both loss functions and neural networks are computation
graphs

This abstraction allows us to think of neural networks as
functions (in a programming sense) that will be “filled in” by
data

46

Refresher: Multi-Layer Perceptron (MLP)

47

Stack many fully connected
layers on top of each other

Each layer feeds into the
next one

If the total number of layers
is L (here L=2), then the first
L-1 layers construct the
representation and the last
one is the linear predictor
over it

Recurrent Neural Networks

Neural networks are prediction machines

Neural
network

Input

Prediction
We can assign labels to inputs

cat burrito

49

Neural networks are prediction machines

Neural
network

Input

Prediction
We can assign labels to inputs

cat burrito

But what if the label to an input depends on a previous state of the network?

50

Neural networks are prediction machines

Neural
network

Input

Prediction
We can assign labels to inputs

cat burrito

But what if the label to an input depends on a previous state of the network?

Vanilla neural networks
1. Do not have persistent memory
2. Can not deal with varying sized inputs

51

Sequential prediction: Examples

• Language models: “It was a dark and stormy _______”
– Constructing sentences automatically requires us to remember what

we constructed before

• Speech recognition
– Convert a sequence of audio signals to words
– The word at time t may depend on what word was predicted at time

(t-1)

• Event extraction from movies
– Watch a movie and predict what events are happening
– The events at a particular scene probably depends on both the video

signal and the events that were predicted in the previous scene

• ….. Many more examples

52

What does it mean to model a sequence?

Some questions:

– Given a sequence of inputs (words, stock prices, etc),
predict the next item in the sequence

– Can we represent arbitrarily long sequences as fixed sized
vectors?
• Perhaps to provide features for subsequent classification

Answer: Recurrent neural networks (RNNs)

53

Recurrent neural networks

• First introduced by Elman 1990

• Provides a mechanism for representing sequences of
arbitrary length into vectors that encode the
sequential information

• A useful design abstraction if you’d like to work with
sequential data
– Till transformers came along, for a few years, RNNs were

the best tools for representing text sequences

The RNN abstraction

A high level overview that doesn’t go into details

55

An RNN
cell

Input

Output

An RNN cell is a unit
of differentiable
compute that maps
inputs to outputs

The RNN abstraction

A high level overview that doesn’t go into details

56

An RNN
cell

Input

Output

An RNN cell is a unit
of differentiable
compute that maps
inputs to outputs

So far, no way to
build a sequence
of such cells

The RNN abstraction

A high level overview that doesn’t go into details

57

An RNN
cell

Input

Output

Recurrent input

To allow the ability to
compose these cells,
they take a recurrent
input from a previous
such cell

The RNN abstraction

A high level overview that doesn’t go into details

58

An RNN
cell

Input

Output

Recurrent outputRecurrent input

To allow the ability to
compose these cells,
they take a recurrent
input from a previous
such cell

In addition to the output,
they also produce a
recurrent output that can
serve as a memory of past
states for the next such cell

The RNN abstraction

A high level overview that doesn’t go into details

59

Conceptually two operations

Using the input and the
recurrent input (also called the
previous cell state), compute

1. The next cell state

2. The output

The RNN abstraction: A simple example

60

John live
s

in Salt Lake City

This template is unrolled for each input

The RNN abstraction: A simple example

61

John live
s

in Salt Lake City

John

Initial state

Output 1

This computation
graph is used here

The RNN abstraction: A simple example

62

John live
s

in Salt Lake City

John

Initial state

lives

Output 1 Output 2

This computation
graph is used here

The RNN abstraction: A simple example

63

John live
s

in Salt Lake City

John

Initial state

lives in

Output 1 Output 2 Output 3

This computation
graph is used here

The RNN abstraction: A simple example

64

John live
s

in Salt Lake City

John

Initial state

lives in Salt

Output 1 Output 2 Output 3 Output 4

This computation
graph is used here

The RNN abstraction: A simple example

65

John live
s

in Salt Lake City

John

Initial state

lives in Salt Lake

Output 1 Output 2 Output 3 Output 4 Output 5

This computation
graph is used here

The RNN abstraction: A simple example

66

John live
s

in Salt Lake City

John

Initial state

lives in Salt Lake Cit
y

Output 1 Output 2 Output 3 Output 4 Output 5 Output 6

This computation
graph is used here

The RNN abstraction

67

An RNN
cell

Input

Output

Recurrent outputRecurrent input

Sometimes this is represented as a “neural network with a loop”.

But really, when unrolled, there are no loops. Just a big feedforward network.

An example: Character level language
model

68

What can we do with such an abstraction?

1. The encoder: Convert a sequence into a feature vector for subsequent classification

2. A generator: Produce a sequence using an initial state

3. A transducer: Convert a sequence into another sequence

4. A conditional generator (or an encoder-decoder): Combine 1 and 2

What can we do with such an abstraction?

1. The encoder: Convert a sequence into a feature vector for subsequent classification

2. A generator: Produce a sequence using an initial state

3. A transducer: Convert a sequence into another sequence

4. A conditional generator (or an encoder-decoder): Combine 1 and 2

This set of operations also applies
to other models for sequences. In
particular, transformers.

1. An Encoder

Convert a sequence into a feature vector for
subsequent classification

71

I

Initia
l
state

like cake

1. An Encoder

Convert a sequence into a feature vector for
subsequent classification

72

I

Initial state

like cake

A neural network

1. An Encoder

Convert a sequence into a feature vector for
subsequent classification

73

I

Initial state

like cake

A neural network

loss

1. An Encoder

Convert a sequence into a feature vector for
subsequent classification

74

I like cake

A neural network

loss

Example: Encode a sentence or a phrase into a feature vector for a classification
task such as sentiment classification

Initial state

2. A Generator

Produce a sequence using an initial state

75

∅ ∅ ∅

I like cake

Initial state

2. A Generator

Produce a sequence using an initial state

76

∅ ∅ ∅

I like cake

loss

Initial state

2. A Generator

Produce a sequence using an initial state

77

∅ I like

I like cake

loss

Maybe the previous output becomes the current input

Initial state

2. A Generator

Produce a sequence using an initial state

78

∅ I like

I like cake

loss

Examples: Text generation tasks

Initial state

3. A Transducer

Convert a sequence into another sequence

79

I like cake

Pronoun Verb Noun

Initial state

3. A Transducer

Convert a sequence into another sequence

80

I like cake

Pronoun Verb Noun

loss

Initial state

4. Conditioned generator

Or an encoder-decoder: First encode a sequence, then
generate another one

81

I

Initial
state

like cake

First encode a sequence

4. Conditioned generator

Or an encoder-decoder: First encode a sequence, then
generate another one

82

I

Initial
state

like cake ∅ ∅ ∅

मला केक आवडतो

Then decode it to produce a different sequence

4. Conditioned generator

Or an encoder-decoder: First encode a sequence, then
generate another one

83

I

Initial
state

like cake ∅ ∅ ∅

मला केक आवडतो

Example: This used to be a building block for neural machine translation

A simple RNN

At each step, an RNN:
– Computes the next hidden state: 𝒉𝑡 = f(𝒉𝑡−1, 𝐱𝑡)

– (Optional) Computes the output: 𝒚𝑡 = g(𝒉𝑡)

Need to specify two functions:

1. How to generate the current state using the previous
hidden state and the current input?

2. How to generate the current output using the current
hidden state?

84

Computing the value of a state

85

𝒉𝑡−1 𝐱𝑡

1. How to generate the current state using the previous state and the current input?

The previous state
A vector in ℜ𝑑ℎ

The current input
A vector in ℜ𝑑

Computing the value of a state

86

𝒉𝑡−1 𝐖h

𝒉𝑡−1𝐖S

𝐱𝑡

1. How to generate the current state using the previous state and the current input?

The previous state The current input

∈ ℜ𝑑𝑠

multiply

Computing the value of a state

87

𝒉𝑡−1 𝐖h

𝒉𝑡−1𝐖h

𝐱𝑡 𝐖𝐼

𝐱𝑡𝐖I

1. How to generate the current state using the previous state and the current input?

The previous state The current input

multiply

Computing the value of a state

88

𝐛

𝒉𝑡−1 𝒉

𝒉𝑡−1𝐖h

𝐱𝑡 𝐖𝐼

𝐱𝑡𝐖I

+

1. How to generate the current state using the previous state and the current input?

The previous state The current input

A bias vector

𝒉𝑡−1𝐖ℎ + 𝐱𝑡𝐖𝐼 + 𝐛

Computing the value of a state

89

𝐛

𝒉𝑡−1 𝐖h

𝒉𝑡−1𝐖h

𝐱𝑡 𝐖𝐼

𝐱𝑡𝐖I

+

𝑔

1. How to generate the current state using the previous state and the current input?

The previous state The current input

A non-linearity.
Typically, a
tanh or ReLU

A bias vector

𝑔(𝒉𝑡−1𝐖ℎ + 𝐱𝑡𝐖𝐼 + 𝐛)

Computing the value of a state

90

𝐛

𝒉𝑡−1 𝐖h

𝒉𝑡−1𝐖h

𝐱𝑡 𝐖𝐼

𝐱𝑡𝐖I

+

𝑔

1. How to generate the current state using the previous state and the current input?

The previous state The current input

A non-linearity.
Typically, a
tanh or ReLU

A bias vector

ℎ

Next state 𝒉𝑡 = 𝑔(𝒉𝑡−1𝐖ℎ + 𝐱𝑡𝐖𝐼 + 𝐛)

The Elman RNN

91

The Elman RNN

92

𝐛

𝒉𝑡−1 𝐖h

𝒉𝑡−1𝐖h

𝐱𝑡 𝐖𝐼

𝐱𝑡𝐖I

+

𝑔

Prev.
state

Current input

Output

Next
state

How do we train a recurrent network?

We need to specify a problem first. Let’s take an example.
– Inputs are sequences (say, of words)

– The outputs are labels associated with each word

– Losses for each word are added up

93

I

Initia
l
state

like cake

Pronoun Verb Noun

loss1 loss2 loss3

Loss

The vanishing gradient problem

• As the length of the sequence grows, the impact of
the far away inputs diminishes because the gradient
vanishes

• Applicable not only to recurrent networks, but to any
case where we have a long chain of such activations
(i.e. in a deep network): Layers closer to the loss will
get larger updates

94

[Hochreiter 1991, Bengio et al 1994]

The vanishing gradient problem

95

Why is this a problem?

The vanishing gradient problem

96

Why is this a problem?

I have a banana and an apple. My friend ate the banana and I ate the ________?

The vanishing gradient problem

97

Why is this a problem?

I have a banana and an apple. My friend ate the banana. I was hungry and wanted
a fruit. So I ate the ________?

The vanishing gradient problem

98

Why is this a problem?

I have a banana and an apple. My friend ate the banana. I was hungry and wanted
a fruit. I really wished I had a banana as well, but we were all out. So I ate the
________?

Great LSTM Blog

• https://colah.github.io/posts/2015-08-
Understanding-LSTMs/

99

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Predicting sequences? Consider an LSTM

RNNs and especially LSTMs are a fundamental unit of
recurrent neural networks

– Useful building block for modeling sequences

– Several variants exist, but all have a similar flavor
• Eg: The gated recurrent unit is a simpler variant

100

Convolutional Neural Networks

Convolutional Neural Networks

Designed to
1. Identify local predictors in a larger input

2. Pool them together to create a feature
representation

3. And possibly repeat this in a hierarchical fashion

102

CNN terminology

• Filter
– A function that transforms in input matrix/vector into a scalar feature
– A filter is a learned feature detector

• Channel
– In computer vision, color images have red, blue and green channels
– In general, a channel represents a medium that captures information

about an input independent of other channels
• For example, different kinds of word embeddings could be different channels
• Channels could themselves be produced by previous convolutional layers

• Receptive field
– The region of the input that a filter currently focuses on

103

Shows its computer visions and signal processing origins

CNN terminology

• Filter
– A function that transforms in input matrix/vector into a scalar feature
– A filter is a learned feature detector (also called a feature map)

• Channel
– In computer vision, color images have red, blue and green channels
– In general, a channel represents a medium that captures information

about an input independent of other channels
• For example, different kinds of word embeddings could be different channels
• Channels could themselves be produced by previous convolutional layers

• Receptive field
– The region of the input that a filter currently focuses on

104

Shows its computer visions and signal processing origins

CNN terminology

• Filter
– A function that transforms in input matrix/vector into a scalar feature
– A filter is a learned feature detector (also called a feature map)

• Channel
– In computer vision, color images have red, blue and green channels
– In general, a channel represents a “view of the input” that captures

information about an input independent of other channels
• For example, different kinds of word embeddings could be different channels
• Channels could themselves be produced by previous convolutional layers

• Receptive field
– The region of the input that a filter currently focuses on

105

Shows its computer visions and signal processing origins

CNN terminology

• Filter
– A function that transforms in input matrix/vector into a scalar feature

– A filter is a learned feature detector (also called a feature map)

• Channel
– In computer vision, color images have red, blue and green channels

– In general, a channel represents a “view of the input” that captures
information about an input independent of other channels
• Channels could themselves be produced by previous convolutional layers

• Receptive field
– The region of the input that a filter currently focuses on

106

Shows its computer visions and signal processing origins

What is a convolution?

107

Let’s see this using an example for vectors.

We will generalize this to matrices and beyond, but the general idea remains the same.

What is a convolution?

108

An example using vectors

2 3 1 3 2 1A vector 𝐱

What is a convolution?

109

2 3 1 3 2 1

1 2 1

A vector 𝐱

Filter 𝐟 of size 𝑛

Here, the filter size is 3

What is a convolution?

110

2 3 1 3 2 1

1 2 1

A vector 𝐱

Filter 𝐟 of size
𝑛

The output is also a vector

What is a convolution?

111

2 3 1 3 2 1

1 2 1

A vector 𝐱

Filter 𝐟 of size
𝑛

The output is also a vector

The filter moves across the vector.

At each position, the output is the dot product of the filter with a slice of the vector of that size.

What is a convolution?

112

2 3 1 3 2 1

1 2 1

A vector 𝐱

Filter 𝐟 of size
𝑛

0

Padding at the beginning

What is a convolution?

113

2 3 1 3 2 1

1 2 1

A vector 𝐱

Filter 𝐟 of size
𝑛

7The output is also a vector

0

Padding at the beginning

What is a convolution?

114

2 3 1 3 2 1

1 2 1

A vector 𝐱

Filter 𝐟 of size
𝑛

7 9The output is also a vector

What is a convolution?

115

2 3 1 3 2 1

1 2 1

A vector 𝐱

Filter 𝐟 of size
𝑛

7 9 8The output is also a vector

What is a convolution?

116

2 3 1 3 2 1

1 2 1

A vector 𝐱

Filter 𝐟 of size
𝑛

7 9 8 9The output is also a vector

What is a convolution?

117

2 3 1 3 2 1

1 2 1

A vector 𝐱

Filter 𝐟 of size
𝑛

An example using vectors

7 9 8 9 8The output is also a vector

What is a convolution?

118

2 3 1 3 2 1

1 2 1

A vector 𝐱

Filter 𝐟 of size
𝑛

An example using vectors

7 9 8 9 8 4

0

Padding at the end

The output is also a vector

What is a convolution?

119

The same idea applies to matrices as well

An input matrix A filter

The filter moves across the matrix.

At each position, the output is the dot product of the filter with a slice of the matrix of that size.

What is a convolution?

120

The same idea applies to matrices as well

An input matrix A filter
The result

of
convolution

The filter moves across the matrix.

At each position, the output is the dot product of the filter with a slice of the matrix of that size.

What is a convolution?

121

The same idea applies to matrices as well

An input matrix A filter
The result

of
convolution

The filter moves across the matrix.

At each position, the output is the dot product of the filter with a slice of the matrix of that size.

What is a convolution?

122

The same idea applies to matrices as well

An input matrix A filter
The result

of
convolution

The filter moves across the matrix.

At each position, the output is the dot product of the filter with a slice of the matrix of that size.

What is a convolution?

123

The same idea applies to matrices as well

An input matrix A filter
The result

of
convolution

The filter moves across the matrix.

At each position, the output is the dot product of the filter with a slice of the matrix of that size.

What is a convolution?

124

The same idea applies to matrices as well

An input matrix A filter
The result

of
convolution

The filter moves across the matrix.

At each position, the output is the dot product of the filter with a slice of the matrix of that size.

What is a convolution?

125

The same idea applies to matrices as well

An input matrix A filter
The result

of
convolution

The filter moves across the matrix.

At each position, the output is the dot product of the filter with a slice of the matrix of that size.

What is a convolution?

126

The same idea applies to matrices as well

An input matrix A filter
The result

of
convolution

And so on…

The filter moves across the matrix.

At each position, the output is the dot product of the filter with a slice of the matrix of that size.

What is a convolution?

127

The same idea applies to matrices as well

An input matrix A filter
The result

of
convolution

The filter moves across the matrix.

At each position, the output is the dot product of the filter with a slice of the matrix of that size.

What is a convolution?

128

The same idea applies to matrices as well

An input matrix A filter
The result

of
convolution

And so on…

The filter moves across the matrix.

At each position, the output is the dot product of the filter with a slice of the matrix of that size.

What is a convolution?

129

The same idea applies to matrices as well

An input matrix A filter
The result

of
convolution

The filter moves across the matrix.

At each position, the output is the dot product of the filter with a slice of the matrix of that size.

What is a convolution?

130

What would this kind of filter do?

An input matrix A filter
The result

of
convolution

0 1 0

0 1 0

0 1 0

What is a convolution?

131

What would this kind of filter do?

An input matrix A filter
The result

of
convolution

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

Pooling: An aggregation operation

• A convolution produces a vector/matrix that captures
properties of each window

• Pooling combines this information to produce a down-
sampled version vector/matrix
– Typically using the maximum or the average value within a window
– Tries to find most important or salient features within a window

• Intuition
– A filter is a feature detector that discovers how well each window

matches a feature of interest
– The most important features should be recognized regardless of their

location
– Answer: Pool the information from different windows together

132

Pooling: An aggregation operation

• A convolution produces a vector/matrix that captures
properties of each window

• Pooling combines this information to produce a down-
sampled version vector/matrix
– Typically using the maximum or the average value within a window

• Intuition
– A filter is a feature detector that discovers how well each window

matches a feature of interest

– The most important features should be recognized regardless of their
location

– Answer: Pool the information from different windows together

133

What is pooling?

134

2 3 1 3 2 1

1 2 1

A vector 𝐱

Filter 𝐟 of size
𝑛

An example using vectors

7 9 8 9 8 4The output is also a vector

The pooling operation can
be applied using a window
as well

Example 1: Max pooling with window size 3

What is pooling?

135

2 3 1 3 2 1

1 2 1

A vector 𝐱

Filter 𝐟 of size
𝑛

An example using vectors

7 9 8 9 8 4

The pooling operation can
be applied using a window
as well

9

Example 1: Max pooling with window size 3

What is pooling?

136

2 3 1 3 2 1

1 2 1

A vector 𝐱

Filter 𝐟 of size
𝑛

An example using vectors

7 9 8 9 8 4

The pooling operation can
be applied using a window
as well

9 9

Example 1: Max pooling with window size 3

What is pooling?

137

2 3 1 3 2 1

1 2 1

A vector 𝐱

Filter 𝐟 of size
𝑛

An example using vectors

7 9 8 9 8 4

The pooling operation can
be applied using a window
as well

9 9 9

Example 1: Max pooling with window size 3

What is pooling?

138

2 3 1 3 2 1

1 2 1

A vector 𝐱

Filter 𝐟 of size
𝑛

An example using vectors

7 9 8 9 8 4The output is also a vector

The pooling operation can
be applied using a window
as well

9 9 9 9

Example 1: Max pooling with window size 3

What is pooling?

139

2 3 1 3 2 1

1 2 1

A vector 𝐱

Filter 𝐟 of size
𝑛

An example using vectors

7 9 8 9 8 4

The pooling operation can
be applied using a window
as well

Example 2: Average pooling with window size 3

What is pooling?

140

2 3 1 3 2 1

1 2 1

A vector 𝐱

Filter 𝐟 of size
𝑛

An example using vectors

7 9 8 9 8 4

The pooling operation can
be applied using a window
as well

8

Example 2: Average pooling with window size 3

What is pooling?

141

2 3 1 3 2 1

1 2 1

A vector 𝐱

Filter 𝐟 of size
𝑛

An example using vectors

7 9 8 9 8 4

The pooling operation can
be applied using a window
as well

8 8.6

Example 2: Average pooling with window size 3

What is pooling?

142

2 3 1 3 2 1

1 2 1

A vector 𝐱

Filter 𝐟 of size
𝑛

An example using vectors

7 9 8 9 8 4

The pooling operation can
be applied using a window
as well

8 8.6 8.3

Example 2: Average pooling with window size 3

What is pooling?

143

2 3 1 3 2 1

1 2 1

A vector 𝐱

Filter 𝐟 of size
𝑛

An example using vectors

7 9 8 9 8 4

The pooling operation can
be applied using a window
as well

8 8.6 8.3 7

Example 2: Average pooling with window size 3

What is pooling?

144

2 3 1 3 2 1

1 2 1

A vector 𝐱

Filter 𝐟 of size
𝑛

An example using vectors

7 9 8 9 8 4

The pooling operation can
be applied using a window
as well

Example 3: Max pooling with window size = length of the vector

9

What is pooling?

145

2 3 1 3 2 1

1 2 1

A vector 𝐱

Filter 𝐟 of size
𝑛

An example using vectors

7 9 8 9 8 4The output is also a vector

The pooling operation can
be applied using a window
as well

Important note
There are no learned parameters for the pooling
operation. It is a deterministic operation.

Convolution + Pooling = one layer

• Input: a matrix. Convolution will operate over windows of this matrix.

• The window size defines the receptive field

– We will refer to the window as xi

• A filter is defined by some parameters (that will be learned)

– In general, a matrix u of the same shape as a the window and a bias b

• Convolution: Iterate over all windows and apply the filter

– Typically has a non-linearity (e.g. ReLU)
𝑝𝑖 = 𝑔(𝑢 ⋅ 𝑥𝑖 + 𝑏)

• Pooling: Aggregate the 𝑝𝑖 ’s into a down-sampled version, sometimes a single number

• Typically, there are many filters, each of which are pooled independently

146

Example: LeNet

An example network uses these building block

147

LeNet-5 was proposed by Yann LeCun for handwriting recognition
Had several levels of convolution-pooling

https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html

https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html

AlexNet

148LeNet
Image from d2l.ai

AlexNet

149

Image filters learned by the first layer of
AlexNet

150
Image from Krizhevsky et al (2012)

The filters from the first layer of AlexNet

Lower layers resembled traditional filters from computer vision like edge detectors

Higher layers did indeed represent composite objects like noses, eyes, people, dogs, etc

151

Summary: Convolutional Neural Networks

Default building block for images and image-like data

A typical architecture involves a set of CNN layers
followed by an MLP for classification

After AlexNet, there were more named networks like
VGGNet, ResNet, and GoogLeNet which became
standard building blocks for handling images

(Recently though, image transformers seem to be gaining
popularity)

152

Summary: Optimizers

• Standard libraries offer standard optimizers

• The most basic optimizer is stochastic gradient
descent, which we saw

• In practice, use Adam optimizer or one of its variants

– Has many hyperparameters

– Lots of folk knowledge about them 

153

Summary: Hyperparameters

• Larger models + more complicated optimizers =
profusion of hyperparameters

• How do we find good hyperparameters?

– Lots of experimentation with held out data

– Often libraries come with good defaults, but not all of
them will work everywhere

– Yet, there is a bit of an art to this

154

Tutorials and references

• Basic Pytorch Tutorials
– https://pytorch.org/tutorials/beginner/deep_learning_60min_b

litz.html

– https://clemsonciti.github.io/rcde_workshops/pytorch/03-
regression_and_classification.html

– https://machinelearningmastery.com/building-a-regression-
model-in-pytorch/

– https://www.geeksforgeeks.org/classification-using-pytorch-
linear-function/

• Free, interactive Deep Learning textbook
– https://d2l.ai/

155

https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html
https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html
https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html
https://clemsonciti.github.io/rcde_workshops/pytorch/03-regression_and_classification.html
https://clemsonciti.github.io/rcde_workshops/pytorch/03-regression_and_classification.html
https://clemsonciti.github.io/rcde_workshops/pytorch/03-regression_and_classification.html
https://clemsonciti.github.io/rcde_workshops/pytorch/03-regression_and_classification.html
https://machinelearningmastery.com/building-a-regression-model-in-pytorch/
https://machinelearningmastery.com/building-a-regression-model-in-pytorch/
https://machinelearningmastery.com/building-a-regression-model-in-pytorch/
https://machinelearningmastery.com/building-a-regression-model-in-pytorch/
https://machinelearningmastery.com/building-a-regression-model-in-pytorch/
https://machinelearningmastery.com/building-a-regression-model-in-pytorch/
https://machinelearningmastery.com/building-a-regression-model-in-pytorch/
https://machinelearningmastery.com/building-a-regression-model-in-pytorch/
https://machinelearningmastery.com/building-a-regression-model-in-pytorch/
https://machinelearningmastery.com/building-a-regression-model-in-pytorch/
https://machinelearningmastery.com/building-a-regression-model-in-pytorch/
https://machinelearningmastery.com/building-a-regression-model-in-pytorch/
https://www.geeksforgeeks.org/classification-using-pytorch-linear-function/
https://www.geeksforgeeks.org/classification-using-pytorch-linear-function/
https://www.geeksforgeeks.org/classification-using-pytorch-linear-function/
https://www.geeksforgeeks.org/classification-using-pytorch-linear-function/
https://www.geeksforgeeks.org/classification-using-pytorch-linear-function/
https://www.geeksforgeeks.org/classification-using-pytorch-linear-function/
https://www.geeksforgeeks.org/classification-using-pytorch-linear-function/
https://www.geeksforgeeks.org/classification-using-pytorch-linear-function/
https://www.geeksforgeeks.org/classification-using-pytorch-linear-function/
https://www.geeksforgeeks.org/classification-using-pytorch-linear-function/
https://d2l.ai/
https://d2l.ai/

	Default Section
	Slide 1: Deep Learning

	examples of successes
	Slide 2: Success stories
	Slide 3: Object recognition
	Slide 4: Superhuman speech recognition
	Slide 5: Captions generated by a neural network
	Slide 6: And many more successes
	Slide 7: A class of tools impacting diverse domains

	whence representations
	Slide 8: Why deep learning?
	Slide 9: Machine learning is easy
	Slide 10: Even these functions can be made linear
	Slide 11: Even these functions can be made linear
	Slide 12: The blown up feature space
	Slide 13: The blown up feature space
	Slide 14: The blown up feature space
	Slide 15: The blown up feature space
	Slide 16: A toy example
	Slide 17: A toy example
	Slide 18: A toy example

	what is deep learning
	Slide 19: What is deep learning?
	Slide 20: What is deep learning?
	Slide 21: Hierarchy of learned representations
	Slide 22: A deep learning model illustrated
	Slide 23: Deep learning in context
	Slide 24: Deep learning in context
	Slide 25: Deep learning in context
	Slide 26: Deep learning in context

	intro
	Slide 27: A neural network
	Slide 28: A neural network
	Slide 29: A neural network
	Slide 30: A neural network

	computation-graphs
	Slide 31: Computation graphs

	neural networks
	Slide 32: An example two layer neural network
	Slide 33: An example two layer neural network
	Slide 34: An example two layer neural network
	Slide 35: An example two layer neural network

	forward
	Slide 36: Two algorithmic questions
	Slide 37: Forward propagation

	back
	Slide 38: Two algorithmic questions
	Slide 39: Backpropagation, in general

	loss functions
	Slide 40: The standard process of training neural networks
	Slide 41: The standard process of training neural networks
	Slide 42: The standard process of training neural networks
	Slide 43: The standard process of training neural networks
	Slide 44: The standard process of training neural networks
	Slide 45: The standard process of training neural networks
	Slide 46: Neural networks are data-driven programs
	Slide 47: Refresher: Multi-Layer Perceptron (MLP)
	Slide 48: Recurrent Neural Networks
	Slide 49: Neural networks are prediction machines
	Slide 50: Neural networks are prediction machines
	Slide 51: Neural networks are prediction machines
	Slide 52: Sequential prediction: Examples
	Slide 53: What does it mean to model a sequence?
	Slide 54: Recurrent neural networks
	Slide 55: The RNN abstraction
	Slide 56: The RNN abstraction
	Slide 57: The RNN abstraction
	Slide 58: The RNN abstraction
	Slide 59: The RNN abstraction
	Slide 60: The RNN abstraction: A simple example
	Slide 61: The RNN abstraction: A simple example
	Slide 62: The RNN abstraction: A simple example
	Slide 63: The RNN abstraction: A simple example
	Slide 64: The RNN abstraction: A simple example
	Slide 65: The RNN abstraction: A simple example
	Slide 66: The RNN abstraction: A simple example
	Slide 67: The RNN abstraction
	Slide 68: An example: Character level language model
	Slide 69: What can we do with such an abstraction?
	Slide 70: What can we do with such an abstraction?
	Slide 71: 1. An Encoder
	Slide 72: 1. An Encoder
	Slide 73: 1. An Encoder
	Slide 74: 1. An Encoder
	Slide 75: 2. A Generator
	Slide 76: 2. A Generator
	Slide 77: 2. A Generator
	Slide 78: 2. A Generator
	Slide 79: 3. A Transducer
	Slide 80: 3. A Transducer
	Slide 81: 4. Conditioned generator
	Slide 82: 4. Conditioned generator
	Slide 83: 4. Conditioned generator
	Slide 84: A simple RNN
	Slide 85: Computing the value of a state
	Slide 86: Computing the value of a state
	Slide 87: Computing the value of a state
	Slide 88: Computing the value of a state
	Slide 89: Computing the value of a state
	Slide 90: Computing the value of a state
	Slide 91: The Elman RNN
	Slide 92: The Elman RNN
	Slide 93: How do we train a recurrent network?
	Slide 94: The vanishing gradient problem
	Slide 95: The vanishing gradient problem
	Slide 96: The vanishing gradient problem
	Slide 97: The vanishing gradient problem
	Slide 98: The vanishing gradient problem
	Slide 99: Great LSTM Blog
	Slide 100: Predicting sequences? Consider an LSTM

	Default Section
	Slide 101: Convolutional Neural Networks
	Slide 102: Convolutional Neural Networks

	cnn-history
	Slide 103: CNN terminology
	Slide 104: CNN terminology
	Slide 105: CNN terminology
	Slide 106: CNN terminology

	convolutions
	Slide 107: What is a convolution?
	Slide 108: What is a convolution?
	Slide 109: What is a convolution?
	Slide 110: What is a convolution?
	Slide 111: What is a convolution?
	Slide 112: What is a convolution?
	Slide 113: What is a convolution?
	Slide 114: What is a convolution?
	Slide 115: What is a convolution?
	Slide 116: What is a convolution?
	Slide 117: What is a convolution?
	Slide 118: What is a convolution?
	Slide 119: What is a convolution?
	Slide 120: What is a convolution?
	Slide 121: What is a convolution?
	Slide 122: What is a convolution?
	Slide 123: What is a convolution?
	Slide 124: What is a convolution?
	Slide 125: What is a convolution?
	Slide 126: What is a convolution?
	Slide 127: What is a convolution?
	Slide 128: What is a convolution?
	Slide 129: What is a convolution?
	Slide 130: What is a convolution?
	Slide 131: What is a convolution?
	Slide 132: Pooling: An aggregation operation
	Slide 133: Pooling: An aggregation operation
	Slide 134: What is pooling?
	Slide 135: What is pooling?
	Slide 136: What is pooling?
	Slide 137: What is pooling?
	Slide 138: What is pooling?
	Slide 139: What is pooling?
	Slide 140: What is pooling?
	Slide 141: What is pooling?
	Slide 142: What is pooling?
	Slide 143: What is pooling?
	Slide 144: What is pooling?
	Slide 145: What is pooling?

	convolution+pooling
	Slide 146: Convolution + Pooling = one layer
	Slide 147: Example: LeNet
	Slide 148: AlexNet
	Slide 149
	Slide 150: Image filters learned by the first layer of AlexNet
	Slide 151
	Slide 152: Summary: Convolutional Neural Networks
	Slide 153: Summary: Optimizers
	Slide 154: Summary: Hyperparameters
	Slide 155: Tutorials and references

