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Success stories
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Object recognition

3

Images from Zoph, Barret, et al. "Learning transferable 
architectures for scalable image recognition." Proceedings of 
the IEEE conference on computer vision and pattern 
recognition. 2018.



Superhuman speech recognition
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several people are on a dock in the water .

black and white dog jumps over bar

Images and captions credit: Andrey Karpathy

Captions generated by a neural network



And many more successes

You have heard about them and likely used them
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ChatGPT Google Translate Siri



A class of tools impacting diverse domains
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Why deep learning?
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Machine learning is easy

We just need a lot of data and learning will be 
successful…

… provided we have the right features
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Even these functions can be made linear
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These points are not separable in 1-dimension by a line

What is a one-dimensional line, by the way?

x



Even these functions can be made linear

The trick: Change the representation
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These points are not separable in 1-dimension by a line

What is a one-dimensional line, by the way?

x



The blown up feature space

The trick: Use feature conjunctions
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Transform points: Represent each point x in 2 dimensions by (x, x2)

x
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The blown up feature space

The trick: Use feature conjunctions
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Transform points: Represent each point x in 2 dimensions by (x, x2)
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The blown up feature space

The trick: Use feature conjunctions
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Transform points: Represent each point x in 2 dimensions by (x, x2)

Now the data is linearly separable in this space!

x

x2



A toy example
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We cannot separate the blue circles from the green triangles

Image from Goodfellow et al “Deep Learning”



A toy example
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We cannot separate the blue circles from the green triangles 
in the original representation

But by going to polar coordinates, the separator is a line

Image from Goodfellow et al “Deep Learning”



A toy example
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We cannot separate the blue circles from the green triangles 
in the original representation

But by going to polar coordinates, the separator is a line

What if we did not know about polar 
coordinates? Can a learner discover 
this transformation from data?

Image from Goodfellow et al “Deep Learning”



What is deep learning?
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What is deep learning?

A diverse collection of ideas that are centered around the 
use of neural networks for machine learning

Some common design patterns
1. Learned distributed representations

2. Composing layers of neurons and training them end-to-
end

3. “Differentiable compute”, which allows the use of 
backpropagation
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Hierarchy of learned representations

Rather than hand-crafted representations, make feature extraction into a 
learning problem

Optimize for the final task and the features together

Create a hierarchy of layers of increasing abstraction

Why should this work?

21

— A possibly apocryphal quote from Yann 
Le Cun about not hand-defining features

“Because gradient descent is better than you”



A deep learning model illustrated
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Image from Goodfellow et al “Deep Learning”, originally from Zeigler & Fergus (2014)



Deep learning in context
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Input 

Output  

Hand written 
program  

Traditional programs are hand written. 

A very successful agenda that gave birth to the 
computer revolution.

Success stories: Operating systems, the 
Internet, web browsers, etc



Deep learning in context
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Input 

Output  

Hand written 
program  

Input 

Output  

Hand 
designed 
features

Feature-to-
output 

mapping

Traditional machine learning: 

Hand designed features of inputs 
are given to a learner that learns 
to map features to inputs 

(the blue part is learned)



Deep learning in context
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Input 

Output  

Hand written 
program  

Input 

Output  

Hand 
designed 
features

Feature-to-
output 

mapping

Input 

Output  

Features

Feature-to-
output 

mapping

Shallow representation learning:

The hand-designed features are also part 
of the learned component (blue)



Deep learning in context
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Input 

Output  

Hand written 
program  

Input 

Output  

Hand 
designed 
features

Feature-to-
output 

mapping

Input 

Output  

Features

Feature-to-
output 

mapping

Input 

Output  

Simple 
features

Feature-to-
output 

mapping

Many layers 
of increasingly 

abstract 
features

Deep representation learning: Layers of 
representations are learned. These are of increasing 
abstraction



A neural network

A function that converts inputs to outputs defined by 
a directed acyclic graph

– Nodes organized in layers, correspond to neurons

– Edges carry output of one neuron to another, 
associated with weights

To define a neural network, we need to specify:
– The structure of the graph

• How many nodes, the connectivity

– The activation function on each node

– The edge weights
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Called the architecture 
of the network
Typically predefined, 
part of the design of 
the classifier

Learned from data
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A neural network
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Called the architecture of the 
network
Typically predefined, part of 
the design of the classifier

Learned from data
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Computation graphs

A language for constructing deep neural networks and 
loss functions

– A way to think about differentiable compute

Key ideas: 
– We can represent functions as graphs

– We can dynamically generate these graphs if necessary

– We can define algorithms over these graphs that map to 
learning and prediction
• Prediction via the forward pass

• Learning via gradients computed using the backward pass

31



An example two layer neural network
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𝐡 = tanh 𝐖𝐱 + 𝐛
𝒚 = 𝐕𝐡 + 𝐚



An example two layer neural network
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𝐡 = tanh 𝐖𝐱 + 𝐛
𝒚 = 𝐕𝐡 + 𝐚

𝐖 𝐱

𝐟 𝐌, 𝐯 = 𝐌𝐯 𝐛

𝐟 𝐮, 𝐯 = 𝐮 + 𝐯

𝐡
𝐟 𝐯 = tanh(𝐯)



An example two layer neural network
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An example two layer neural network
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𝐡 = tanh 𝐖𝐱 + 𝐛
𝒚 = 𝐕𝐡 + 𝐚

𝐖 𝐱

𝐟 𝐌, 𝐯 = 𝐌𝐯 𝐛

𝐟 𝐮, 𝐯 = 𝐮 + 𝐯

𝐡
𝐟 𝐯 = tanh(𝐯)

𝐕

𝐟 𝐌, 𝐯 = 𝐌𝐯 𝐚

𝐲𝐟 𝐮, 𝐯 = 𝐮 + 𝐯



Two algorithmic questions

1. Forward propagation
– Given inputs to the graph, compute the value of the 

function expressed by the graph

– Something to think about: Given a node, can we say which 
nodes are inputs? Which nodes are outputs?

2. Backpropagation
– After computing the function value for an input, compute 

the gradient of the function at that input

– Or equivalently: How does the output change if I make a 
small change to the input?

36



Forward propagation

Given a computation graph G and values of its input 
nodes:

For each node in the graph, in topological order:

Compute the value of that node

Why topological order: Ensures that children are 
computed before parents.
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38



Backpropagation, in general

After we have done the forward propagation,

Loop over the nodes in reverse topological order 
starting with a final goal node

– Compute derivatives of final goal node value with respect 
to each edge’s tail node
• If there are multiple outgoing edges from a node, sum up all the 

derivatives for the edges

– Save the computed gradient so that the next time we need 
it, it doesn’t need to be re-computed

39



The standard process of training neural networks

1. Design the graph that defines the computation you want

2. Initialize the graph 
Either randomly, or with pre-trained parameters

3. Iterate over example (or mini-batches of examples):
1. Run the forward pass to calculate the result of the computation using the current parameters

2. Define the loss for the network over the current example

 Characterizes the idea of “how bad is the result that was just computed”

3. Compute the gradient of the loss using backpropagation

4. Update the parameters
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Neural networks are data-driven programs

The forward pass allows us to compute the result of 
computations on examples

The backward pass over loss functions allows us to compute 
the update to the parameters that produced the loss

Both loss functions and neural networks are computation 
graphs

This abstraction allows us to think of neural networks as 
functions (in a programming sense) that will be “filled in” by 
data
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Refresher: Multi-Layer Perceptron (MLP)
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Stack many fully connected 
layers on top of each other

Each layer feeds into the 
next one

If the total number of layers 
is L (here L=2), then the first 
L-1 layers construct the 
representation and the last 
one is the linear predictor 
over it



Recurrent Neural Networks



Neural networks are prediction machines

Neural 
network

Input

Prediction
We can assign labels to inputs

cat burrito
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Neural networks are prediction machines

Neural 
network

Input

Prediction
We can assign labels to inputs

cat burrito

But what if the label to an input depends on a previous state of the network?
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Neural networks are prediction machines

Neural 
network

Input

Prediction
We can assign labels to inputs

cat burrito

But what if the label to an input depends on a previous state of the network?

Vanilla neural networks 
1. Do not have persistent memory
2. Can not  deal with varying sized inputs

51



Sequential prediction: Examples

• Language models: “It was a dark and stormy _______”
– Constructing sentences automatically requires us to remember what 

we constructed before

• Speech recognition
– Convert a sequence of audio signals to words
– The word at time t may depend on what word was predicted at time 

(t-1)

• Event extraction from movies
– Watch a movie and predict what events are happening
– The events at a particular scene probably depends on both the video 

signal and the events that were predicted in the previous scene

• ….. Many more examples
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What does it mean to model a sequence?

Some questions:

– Given a sequence of inputs (words, stock prices, etc), 
predict the next item in the sequence

– Can we represent arbitrarily long sequences as fixed sized 
vectors? 
• Perhaps to provide features for subsequent classification

Answer: Recurrent neural networks (RNNs)
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Recurrent neural networks

• First introduced by Elman 1990

• Provides a mechanism for representing sequences of 
arbitrary length into vectors that encode the 
sequential information

• A useful design abstraction if you’d like to work with 
sequential data
– Till transformers came along, for a few years, RNNs were 

the best tools for representing text sequences



The RNN abstraction

A high level overview that doesn’t go into details 

55

An RNN 
cell

Input

Output

An RNN cell is a unit 
of differentiable 
compute that maps 
inputs to outputs



The RNN abstraction

A high level overview that doesn’t go into details 
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An RNN 
cell

Input

Output

An RNN cell is a unit 
of differentiable 
compute that maps 
inputs to outputs

So far, no way to 
build a sequence 
of such cells



The RNN abstraction

A high level overview that doesn’t go into details 
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An RNN 
cell

Input

Output

Recurrent input

To allow the ability to 
compose these cells, 
they take a recurrent 
input from a previous 
such cell



The RNN abstraction

A high level overview that doesn’t go into details 
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An RNN 
cell

Input

Output

Recurrent outputRecurrent input

To allow the ability to 
compose these cells, 
they take a recurrent 
input from a previous 
such cell

In addition to the output, 
they also produce a 
recurrent output that can 
serve as a memory of past 
states for the next such cell



The RNN abstraction

A high level overview that doesn’t go into details 

59

Conceptually two operations 

Using the input and the 
recurrent input (also called the 
previous cell state), compute

1. The next cell state

2. The output



The RNN abstraction: A simple example
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John live
s

in Salt Lake City

This template is unrolled for each input



The RNN abstraction: A simple example
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John live
s

in Salt Lake City

John

Initial state

Output 1

This computation 
graph is used here



The RNN abstraction: A simple example

62

John live
s

in Salt Lake City

John

Initial state

lives

Output 1 Output 2

This computation 
graph is used here



The RNN abstraction: A simple example
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John live
s

in Salt Lake City

John

Initial state

lives in

Output 1 Output 2 Output 3

This computation 
graph is used here



The RNN abstraction: A simple example
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John live
s

in Salt Lake City

John

Initial state

lives in Salt

Output 1 Output 2 Output 3 Output 4

This computation 
graph is used here



The RNN abstraction: A simple example
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John live
s

in Salt Lake City

John

Initial state

lives in Salt Lake

Output 1 Output 2 Output 3 Output 4 Output 5

This computation 
graph is used here



The RNN abstraction: A simple example
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John live
s

in Salt Lake City

John

Initial state

lives in Salt Lake Cit
y

Output 1 Output 2 Output 3 Output 4 Output 5 Output 6

This computation 
graph is used here



The RNN abstraction
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An RNN 
cell

Input

Output

Recurrent outputRecurrent input

Sometimes this is represented as a “neural network with a loop”. 

But really, when unrolled, there are no loops. Just a big feedforward network.



An example: Character level language 
model

68



What can we do with such an abstraction?

1. The encoder: Convert a sequence into a feature vector for subsequent classification

2. A generator: Produce a sequence using an initial state

3. A transducer: Convert a sequence into another sequence

4. A conditional generator (or an encoder-decoder): Combine 1 and 2



What can we do with such an abstraction?

1. The encoder: Convert a sequence into a feature vector for subsequent classification

2. A generator: Produce a sequence using an initial state

3. A transducer: Convert a sequence into another sequence

4. A conditional generator (or an encoder-decoder): Combine 1 and 2

This set of operations also  applies 
to other models for sequences. In 
particular, transformers.



1. An Encoder

Convert a sequence into a feature vector for 
subsequent classification

71

I

Initia
l 
state

like cake



1. An Encoder

Convert a sequence into a feature vector for 
subsequent classification
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I

Initial state

like cake

A neural network
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Convert a sequence into a feature vector for 
subsequent classification
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A neural network
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1. An Encoder

Convert a sequence into a feature vector for 
subsequent classification
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I like cake

A neural network

loss

Example: Encode a sentence or a phrase into a feature vector for a classification 
task such as sentiment classification

Initial state



2. A Generator

Produce a sequence using an initial state
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∅ ∅ ∅

I like cake

Initial state



2. A Generator

Produce a sequence using an initial state
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∅ ∅ ∅

I like cake

loss

Initial state



2. A Generator

Produce a sequence using an initial state
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∅ I like

I like cake

loss

Maybe the previous output becomes the current input

Initial state



2. A Generator

Produce a sequence using an initial state
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∅ I like

I like cake

loss

Examples: Text generation tasks

Initial state



3. A Transducer

Convert a sequence into another sequence
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I like cake

Pronoun Verb Noun

Initial state



3. A Transducer

Convert a sequence into another sequence
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I like cake

Pronoun Verb Noun

loss

Initial state



4. Conditioned generator

Or an encoder-decoder: First encode a sequence, then 
generate another one

81

I

Initial 
state

like cake

First encode a sequence



4. Conditioned generator

Or an encoder-decoder: First encode a sequence, then 
generate another one
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I

Initial 
state

like cake ∅ ∅ ∅

मला केक आवडतो

Then decode it to produce a different sequence



4. Conditioned generator

Or an encoder-decoder: First encode a sequence, then 
generate another one
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I

Initial 
state

like cake ∅ ∅ ∅

मला केक आवडतो

Example: This used to be a building block for neural machine translation



A simple RNN 

At each step, an RNN:
– Computes the next hidden state: 𝒉𝑡 = f(𝒉𝑡−1, 𝐱𝑡) 

– (Optional) Computes the output: 𝒚𝑡 = g(𝒉𝑡) 

Need to specify two functions:

1. How to generate the current state using the previous 
hidden state and the current input?

2. How to generate the current output using the current 
hidden state?
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Computing the value of a state
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𝒉𝑡−1 𝐱𝑡

1. How to generate the current state using the previous state and the current input?

The previous state
A vector in ℜ𝑑ℎ

The current input 
A vector in ℜ𝑑



Computing the value of a state
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𝒉𝑡−1 𝐖h

𝒉𝑡−1𝐖S

𝐱𝑡

1. How to generate the current state using the previous state and the current input?

The previous state The current input 

∈ ℜ𝑑𝑠

multiply



Computing the value of a state
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𝒉𝑡−1 𝐖h

𝒉𝑡−1𝐖h

𝐱𝑡 𝐖𝐼

𝐱𝑡𝐖I

1. How to generate the current state using the previous state and the current input?

The previous state The current input 

multiply



Computing the value of a state
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𝐛

𝒉𝑡−1 𝒉

𝒉𝑡−1𝐖h

𝐱𝑡 𝐖𝐼

𝐱𝑡𝐖I

+

1. How to generate the current state using the previous state and the current input?

The previous state The current input 

A bias vector

𝒉𝑡−1𝐖ℎ + 𝐱𝑡𝐖𝐼 + 𝐛 



Computing the value of a state
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𝐛

𝒉𝑡−1 𝐖h

𝒉𝑡−1𝐖h

𝐱𝑡 𝐖𝐼

𝐱𝑡𝐖I

+

𝑔

1. How to generate the current state using the previous state and the current input?

The previous state The current input 

A non-linearity. 
Typically, a 
tanh or ReLU

A bias vector

𝑔(𝒉𝑡−1𝐖ℎ + 𝐱𝑡𝐖𝐼 + 𝐛) 



Computing the value of a state
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𝐛

𝒉𝑡−1 𝐖h

𝒉𝑡−1𝐖h

𝐱𝑡 𝐖𝐼

𝐱𝑡𝐖I

+

𝑔

1. How to generate the current state using the previous state and the current input?

The previous state The current input 

A non-linearity. 
Typically, a 
tanh or ReLU

A bias vector

ℎ

Next state 𝒉𝑡 = 𝑔(𝒉𝑡−1𝐖ℎ + 𝐱𝑡𝐖𝐼 + 𝐛) 



The Elman RNN
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The Elman RNN

92

𝐛

𝒉𝑡−1 𝐖h

𝒉𝑡−1𝐖h

𝐱𝑡 𝐖𝐼

𝐱𝑡𝐖I

+

𝑔

Prev. 
state

Current input

Output

Next 
state



How do we train a recurrent network?

We need to specify a problem first. Let’s take an example.
– Inputs are sequences (say, of words)

– The outputs are labels associated with each word

– Losses for each word are added up

93

I

Initia
l 
state

like cake

Pronoun Verb Noun

loss1 loss2 loss3

Loss



The vanishing gradient problem

• As the length of the sequence grows, the impact of 
the far away inputs diminishes because the gradient 
vanishes

• Applicable not only to recurrent networks, but to any 
case where we have a long chain of such activations 
(i.e. in a deep network): Layers closer to the loss will 
get larger updates

94

[Hochreiter 1991, Bengio et al 1994]



The vanishing gradient problem
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Why is this a problem?



The vanishing gradient problem
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Why is this a problem?

I have a banana and an apple. My friend ate the banana and I ate the ________?



The vanishing gradient problem
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Why is this a problem?

I have a banana and an apple. My friend ate the banana. I was hungry and wanted 
a fruit. So I ate the ________?



The vanishing gradient problem
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Why is this a problem?

I have a banana and an apple. My friend ate the banana. I was hungry and wanted 
a fruit. I really wished I had a banana as well, but we were all out. So I ate the 
________?



Great LSTM Blog

• https://colah.github.io/posts/2015-08-
Understanding-LSTMs/ 
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Predicting sequences? Consider an LSTM

RNNs and especially LSTMs are a fundamental unit of 
recurrent neural networks

– Useful building block for modeling sequences

– Several variants exist, but all have a similar flavor
• Eg: The gated recurrent unit is a simpler variant
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Convolutional Neural Networks 



Convolutional Neural Networks

Designed to
1. Identify local predictors in a larger input

2. Pool them together to create a feature 
representation

3. And possibly repeat this in a hierarchical fashion
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CNN terminology

• Filter
– A function that transforms in input matrix/vector into a scalar feature
– A filter is a learned feature detector

• Channel
– In computer vision, color images have red, blue and green channels
– In general, a channel represents a medium that captures information 

about an input independent of other channels
• For example, different kinds of word embeddings could be different channels
• Channels could themselves be produced by previous convolutional layers

• Receptive field
– The region of the input that a filter currently focuses on

103

Shows its computer visions and signal processing origins



CNN terminology

• Filter
– A function that transforms in input matrix/vector into a scalar feature
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CNN terminology

• Filter
– A function that transforms in input matrix/vector into a scalar feature

– A filter is a learned feature detector (also called a feature map)

• Channel
– In computer vision, color images have red, blue and green channels

– In general, a channel represents a “view of the input” that captures 
information about an input independent of other channels
• Channels could themselves be produced by previous convolutional layers

• Receptive field
– The region of the input that a filter currently focuses on
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Let’s see this using an example for vectors.

We will generalize this to matrices and beyond, but the general idea remains the same.
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An example using vectors

2 3 1 3 2 1A vector 𝐱
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2 3 1 3 2 1

1 2 1

A vector 𝐱

Filter 𝐟 of size 𝑛

Here, the filter size is 3
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2 3 1 3 2 1

1 2 1

A vector 𝐱

Filter 𝐟 of size 
𝑛

The output is also a vector
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2 3 1 3 2 1

1 2 1

A vector 𝐱

Filter 𝐟 of size 
𝑛

The output is also a vector

The filter moves across the vector. 

At each position, the output is the dot product of the filter with a slice of the vector of that size.
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2 3 1 3 2 1

1 2 1

A vector 𝐱

Filter 𝐟 of size 
𝑛

0

Padding at the beginning
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2 3 1 3 2 1

1 2 1

A vector 𝐱

Filter 𝐟 of size 
𝑛

7The output is also a vector

0

Padding at the beginning
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2 3 1 3 2 1

1 2 1

A vector 𝐱

Filter 𝐟 of size 
𝑛

7 9The output is also a vector
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2 3 1 3 2 1

1 2 1

A vector 𝐱

Filter 𝐟 of size 
𝑛

7 9 8The output is also a vector
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2 3 1 3 2 1

1 2 1

A vector 𝐱

Filter 𝐟 of size 
𝑛

7 9 8 9The output is also a vector



What is a convolution?

117

2 3 1 3 2 1

1 2 1

A vector 𝐱

Filter 𝐟 of size 
𝑛

An example using vectors

7 9 8 9 8The output is also a vector
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2 3 1 3 2 1

1 2 1

A vector 𝐱

Filter 𝐟 of size 
𝑛

An example using vectors

7 9 8 9 8 4

0

Padding at the end

The output is also a vector
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The same idea applies to matrices as well

An input matrix A filter

The filter moves across the matrix. 

At each position, the output is the dot product of the filter with a slice of the matrix of that size.
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The same idea applies to matrices as well

An input matrix A filter
The result 

of 
convolution

The filter moves across the matrix. 

At each position, the output is the dot product of the filter with a slice of the matrix of that size.
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The same idea applies to matrices as well

An input matrix A filter
The result 

of 
convolution

The filter moves across the matrix. 

At each position, the output is the dot product of the filter with a slice of the matrix of that size.
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The same idea applies to matrices as well

An input matrix A filter
The result 

of 
convolution

The filter moves across the matrix. 

At each position, the output is the dot product of the filter with a slice of the matrix of that size.
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The same idea applies to matrices as well

An input matrix A filter
The result 

of 
convolution

The filter moves across the matrix. 

At each position, the output is the dot product of the filter with a slice of the matrix of that size.



What is a convolution?

124

The same idea applies to matrices as well

An input matrix A filter
The result 

of 
convolution

The filter moves across the matrix. 

At each position, the output is the dot product of the filter with a slice of the matrix of that size.
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The same idea applies to matrices as well

An input matrix A filter
The result 

of 
convolution

The filter moves across the matrix. 

At each position, the output is the dot product of the filter with a slice of the matrix of that size.
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The same idea applies to matrices as well

An input matrix A filter
The result 

of 
convolution

And so on…

The filter moves across the matrix. 

At each position, the output is the dot product of the filter with a slice of the matrix of that size.
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The same idea applies to matrices as well

An input matrix A filter
The result 

of 
convolution

The filter moves across the matrix. 

At each position, the output is the dot product of the filter with a slice of the matrix of that size.
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The same idea applies to matrices as well

An input matrix A filter
The result 

of 
convolution

And so on…

The filter moves across the matrix. 

At each position, the output is the dot product of the filter with a slice of the matrix of that size.
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The same idea applies to matrices as well

An input matrix A filter
The result 

of 
convolution

The filter moves across the matrix. 

At each position, the output is the dot product of the filter with a slice of the matrix of that size.
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What would this kind of filter do?

An input matrix A filter
The result 

of 
convolution

0 1 0

0 1 0

0 1 0
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What would this kind of filter do?

An input matrix A filter
The result 

of 
convolution

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9



Pooling: An aggregation operation

• A convolution produces a vector/matrix that captures 
properties of each window

• Pooling combines this information to produce a down-
sampled version vector/matrix
– Typically using the maximum or the average value within a window
– Tries to find most important or salient features within a window

• Intuition
– A filter is a feature detector that discovers how well each window 

matches a feature of interest
– The most important features should be recognized regardless of their 

location
– Answer: Pool the information from different windows together
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2 3 1 3 2 1

1 2 1

A vector 𝐱

Filter 𝐟 of size 
𝑛

An example using vectors

7 9 8 9 8 4The output is also a vector

The pooling operation can 
be applied using a window 
as well

Example 1: Max pooling with window size 3
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2 3 1 3 2 1

1 2 1

A vector 𝐱

Filter 𝐟 of size 
𝑛

An example using vectors

7 9 8 9 8 4

The pooling operation can 
be applied using a window 
as well

9

Example 1: Max pooling with window size 3
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2 3 1 3 2 1

1 2 1

A vector 𝐱

Filter 𝐟 of size 
𝑛

An example using vectors

7 9 8 9 8 4

The pooling operation can 
be applied using a window 
as well

9 9

Example 1: Max pooling with window size 3
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2 3 1 3 2 1

1 2 1

A vector 𝐱

Filter 𝐟 of size 
𝑛

An example using vectors

7 9 8 9 8 4

The pooling operation can 
be applied using a window 
as well

9 9 9

Example 1: Max pooling with window size 3
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2 3 1 3 2 1

1 2 1

A vector 𝐱

Filter 𝐟 of size 
𝑛

An example using vectors

7 9 8 9 8 4The output is also a vector

The pooling operation can 
be applied using a window 
as well

9 9 9 9

Example 1: Max pooling with window size 3
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2 3 1 3 2 1

1 2 1

A vector 𝐱

Filter 𝐟 of size 
𝑛

An example using vectors

7 9 8 9 8 4

The pooling operation can 
be applied using a window 
as well

Example 2: Average pooling with window size 3
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2 3 1 3 2 1

1 2 1

A vector 𝐱

Filter 𝐟 of size 
𝑛

An example using vectors

7 9 8 9 8 4

The pooling operation can 
be applied using a window 
as well

8

Example 2: Average pooling with window size 3
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2 3 1 3 2 1

1 2 1

A vector 𝐱

Filter 𝐟 of size 
𝑛

An example using vectors

7 9 8 9 8 4

The pooling operation can 
be applied using a window 
as well

8 8.6

Example 2: Average pooling with window size 3
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2 3 1 3 2 1

1 2 1

A vector 𝐱

Filter 𝐟 of size 
𝑛

An example using vectors

7 9 8 9 8 4

The pooling operation can 
be applied using a window 
as well

8 8.6 8.3

Example 2: Average pooling with window size 3
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2 3 1 3 2 1

1 2 1

A vector 𝐱

Filter 𝐟 of size 
𝑛

An example using vectors

7 9 8 9 8 4

The pooling operation can 
be applied using a window 
as well

8 8.6 8.3 7

Example 2: Average pooling with window size 3
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2 3 1 3 2 1

1 2 1

A vector 𝐱

Filter 𝐟 of size 
𝑛

An example using vectors

7 9 8 9 8 4

The pooling operation can 
be applied using a window 
as well

Example 3: Max pooling with window size = length of the vector 

9
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2 3 1 3 2 1

1 2 1

A vector 𝐱

Filter 𝐟 of size 
𝑛

An example using vectors

7 9 8 9 8 4The output is also a vector

The pooling operation can 
be applied using a window 
as well

Important note
There are no learned parameters for the pooling 
operation. It is a deterministic operation.



Convolution + Pooling = one layer

• Input: a matrix. Convolution will operate over windows of this matrix.

• The window size defines the receptive field

– We will refer to the window as xi

• A filter is defined by some parameters (that will be learned)

– In general, a matrix u of the same shape as a the window and a bias b

• Convolution: Iterate over all windows and apply the filter

– Typically has a non-linearity (e.g. ReLU)
𝑝𝑖 = 𝑔(𝑢 ⋅ 𝑥𝑖 + 𝑏)

• Pooling: Aggregate the 𝑝𝑖 ’s into a down-sampled version, sometimes a single number 

• Typically, there are many filters, each of which are pooled independently
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Example: LeNet

An example network uses these building block

147

LeNet-5 was proposed by Yann LeCun for handwriting recognition
Had several levels of convolution-pooling

https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html 

https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html


AlexNet

148LeNet
Image from d2l.ai

AlexNet
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Image filters learned by the first layer of 
AlexNet

150
Image from Krizhevsky et al (2012)

The filters from the first layer of AlexNet 

Lower layers resembled traditional filters from computer vision like edge detectors

Higher layers did indeed represent composite objects like noses, eyes, people, dogs, etc
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Summary: Convolutional Neural Networks

Default building block for images and image-like data

A typical architecture involves a set of CNN layers 
followed by an MLP for classification

After AlexNet, there were more named networks like 
VGGNet, ResNet, and GoogLeNet which became 
standard building blocks for handling images

(Recently though, image transformers seem to be gaining 
popularity)
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Summary: Optimizers

• Standard libraries offer standard optimizers

• The most basic optimizer is stochastic gradient 
descent, which we saw

• In practice, use Adam optimizer or one of its variants

– Has many hyperparameters

– Lots of folk knowledge about them  
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Summary: Hyperparameters

• Larger models + more complicated optimizers = 
profusion of hyperparameters

• How do we find good hyperparameters?

– Lots of experimentation with held out data

– Often libraries come with good defaults, but not all of 
them will work everywhere

– Yet, there is a bit of an art to this
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Tutorials and references

• Basic Pytorch Tutorials
– https://pytorch.org/tutorials/beginner/deep_learning_60min_b

litz.html 

– https://clemsonciti.github.io/rcde_workshops/pytorch/03-
regression_and_classification.html 

– https://machinelearningmastery.com/building-a-regression-
model-in-pytorch/ 

– https://www.geeksforgeeks.org/classification-using-pytorch-
linear-function/ 

• Free, interactive Deep Learning textbook
– https://d2l.ai/ 
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