CS 4300/6300: Artificial Intelligence

Midterm Review

Midterm Logistics

" |n our classroom during normal class time
" Thursday 12:25-1:45

=] sheet of notes (front and back)

= Calculator allowed but math will be simple and easy to do by
hand

Topics you’ll need to know

A*

Consistent/admissible heuristics
Min-Max search

Alpha-Beta pruning

Expectimax

Probability

= conditional prob
" Independence

= Bayes’ rule

= chainrule

= MDPs

= Value Iteration
= Policy Iteration
= Monte Carlo estimation

" Machine Learning
= Perceptron

= Classification
= Regression

Search Problems

= A search problem consists of:

o 8 O O

= A successor function N 1.0 u

(WItII actiot 1S, COStS)
\ !
“E”, 1.0

= A start state and a goal test

= A solution is a sequence of actions (a plan) which
transforms the start state to a goal state

Graph Search Pseudo-Code

function GRAPH-SEARCH(problem, fringe) return a solution, or failure
closed <— an empty set
fringe < INSERT(MAKE-NODE(INITIAL-STATE|problem)), fringe)
loop do
if fringe is empty then return failure
node <— REMOVE-FRONT(fringe)
if GOAL-TEST(problem, STATE[node|) then return node

if STATE[node| is not in closed then
add STATE[node] to closed
for child-node in EXPAND(STATE|node|, problem) do

if STATE[child-node] is not in closed then fringe <— INSERT(child-node, fringe)

end
end

A-star: Combining UCS and Greedy

= Uniform-cost orders by path cost, or backward cost g(n)
= Greedy orders by goal proximity, or forward cost h(n)

h=2 h=0

= A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

. . g For e A
Admissible Heuristics =, .\ ‘s b«

= A heuristic /1 is admissible (optimistic) if:
0 < h(n) < h™(n)

where h*(n) is the true cost to a nearest goal

o -

= Coming up with admissible heuristics is most of what’s involved
in using A* in practice.

ﬂM@?M Consistency of Heuristics

= Main idea: estimated heuristic costs < actual costs

= Admissibility: heuristic cost < actual cost to goal
h(A) < actual cost fromAto G

= Consistency: heuristic “arc” cost < actual cost for each arc

h(A) — h(C) < cost(A to C) A

= Consequences of consistency:

= The f value along a path never decreases

h(A) < cost(A to C) + h(C)

= A* graph search is optimal

Adversarial Search

10

Minimax Values

States Under Agent’s Control: States Under Opponent’s Control:
V(s) = max V(s) V(s') = min V(s)
s’ €successors(s) sEsuccessors(s’)

-3

Terminal States:
V(s) = known

Minimax Implementation

/def max-value(state):)
initialize v = -0
for each successor of state:
v = max(v, min-value(successor))

returnv

- _/
V(s) = max V(')

s’ Esuccessors(s)

(4

ef min-value(state):
initialize v = +oo
for each successor of state:

~

v = min(v, max-value(successor))

returnv
(&

_/

V(s') = min V(s)

sEsuccessors(s’)

12

Minimax Example

_ %
V7~
- A Z“X&

14

Alpha-Beta Implementation

a: MAX’s best option on path to root
B: MIN’s best option on path to root

At root you should
initialize ¢ = —oo
and f = +oo

~

/def max-value(state, a, B):

initialize v = -0

for each successor of state:
v = max(v, value(successor, a, B))
if v> B returnv
o = max(a, v)

\ return v /

/ N

ef min-value(state, a, B):

initialize v = +oo

for each successor of state:
v = min(v, value(successor, a,))
ifv<areturnv

B =min(pB, v)

\ return v /

a: MAX’s best option on path to root
B: MIN’s best option on path to root

\
/ —

def max-value(state, a, B):

initialize v = -o0

for each successor of state:
v = max(v, value(successor, a, B))
if v preturnv
a = max(a, v)

turnv
\ re
(4

ef min-value(state , a, B):

initialize v = +o0

for each successor of state:
v = min(v, value(successor, a, B))
if v<areturnv

B =min(B, v)

/
~

\ return v /

Alpha-Beta Quiz

10 8

50

Alpha-Beta Example 2

‘ 10 100 ‘

00
=
N
o

Uncertain Search

Mo > CL\ 6 L2

NV /C?\

17

Expectimax Pseudocode

def value(state):

N\

if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is EXP: return exp-value(state)

~

S E5ucC

J

o

/def max-value(state):

~

initialize v = -0
for each successor of state:

v = max(v, value(successor))
return v

%

<

)

Zf(f) V(5)

/def exp-value(state):
initializev=0
for each successor of state:
p = probability(successor)
v += p * value(successor)

\ return v

~

J

Expectimax Pseudocode

/def exp-value(state): \

initializev=0
for each successor of state:
p = probability(successor)

v += p * value(successor)

\ return v /

v=(1/2)(8)+(1/3) (24) + (1/6) (-12) = 10

Mixed Layer Types

= E.g. Backgammon
= Expectiminimax

= Environmentis an
extra “random

agent” player that

moves after each
min/max agent

= Each node
computes the
appropriate
combination of its
children

Probability

21

Unobserved random variables have distributions

P(T)
T p
hot 0.5
cold | 0.5

A distribution is a TABLE of probabilities of values

Probability Distributions

P(W)
W P
sun 0.6
rain 0.1
fog 0.3

meteor 0.0

Shorthand notation:

P(hot) = P(T = hot),
P(cold) = P(T = cold),
P(rain) = P(W = rain),

OK if all domain entries are unique

A probability (lower case value) is a single number

Must have:

P(W = rain) = 0.1

Ve P(X =x2)>0

and

Y P(X=uz)=1

Joint Distributions

" A joint distribution over a set of random variables: X4, X»,... X,

specifies a real number for each assignment (or outcome):

P(X1=x1,Xo0=1xo,... Xy, = xn)

P(T, W)
P(xq,xo,...2n)
T W P
= Must obey: P(x1,25,...2n) >0 hot | sun | 0.4
hot | rain 0.1
Z P(ﬂjla o, .. xn) =1 cold | sun 0.2
(21,22,...0n) cold | rain | 0.3

Size of distribution if n variables with domain sizes d?

= For all but the smallest distributions, impractical to write out!

" P(+x, +y) ?

= P(+x)?

" P(-yOR+x)?

Quiz: Events

P(X,Y)
X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1

Marginal Distributions/Q(/(/D\ - 1)

= Marginal distributions are sub-tables which eliminate variables

= Marginalization (summing out): Combine collapsed rows by adding

P(T, W)
hot sun 04 P(t) = ZP(t, s)
s

hot rain 0.1

cold_ sun 0.2

cold rain 0.3 »

P(s) = Z P(t,s)
t

P(X1=uz1) =) P(X1=u11,Xp =)
xR

P(T)
T P
hot 0.5

cold 0.5

sun

rain

Quiz: Marginal Distributions

i’\)bﬁ’”“ﬁ o,)P(X) -

Xz - Pty TNT S =

P(X,Y) o1 X P
+X O ,g
X Y P
(+X +y 0.2 P(x) = ZP(:U,y) -
1+ y 0.3 J P(Y)
-X +y 0.4 Y P
-X -y 0.1 ———l +y

P(y) => P(z,y) S

Conditional Probabilities

= Asimple relation between joint and conditional probabilities /P (/Y)

= |n fact, this is taken as the definition of a conditional probability

P(a,b
P(alb) = £L%:0)
P(b)
P(T, W) o
T W P . . _PW=sT=¢c),) 02
hot sun 0.4 P(W o S|T o C) o P(T — c)zJ o ﬁ = 0.4
hot rain 0.1
cold sun //05\ =PW=s,T=c¢c)+P(W=7r,T =c)
cold rain 0.3 /> = 0.24+0.3 =0.5

Quiz: Conditional Probabilities

" P(+x|+y)? V(*)ﬁ*j}

P(X,Y) e)
Y P j
+y 0.2 = P(x | +y)?

Yy 0.3
+y 0.4
y 0.1
= P(-y | +x) ?

Q)
P

The Product Rule

= Sometimes have conditional distributions but want the joint

P(y)P(zly) = P(z,y) <& rPams=

~ =l

The Product Rule

P(y)P(z|ly) = P(x,y)

= Example:
P(D|W) P(D,W)
P(W) D W | P D W
R p wet sun 0.1 wet sun
sun | 0.8 ary sun | 09 <:> ary el
ain 02 wet rain 0.7 wet rain
dry rain | 0.3 dry rain

The Chain Rule

More generally, can always write any joint distribution as an
incremental product of conditional distributions N

. X, X Xj
P(r1,22,23) = P(a1) P(rale1) P(sle1, 22) = W/WBPM (e I

P(z1,x2,...xzn) = || P(ailzy ... 2—-1)
7

You can pick any order.

Why is the Chain Rule always true?

Bayes’ Rule

= Two ways to factor a joint distribution over two variables:

P(xz,y) = P(xz|y)P(y) = P(y|z)P(x)

That’s my rule! }

= Dividing, we get:

P(aly) = 292 by

P(y)
= Why is this at all helpful?

= Lets us build one conditional from its reverse
= Often one conditional is tricky but the other one is simple
» Foundation of many systems (e.g. ASR, MT, IRL)

= |n the running for most important Al equation!

http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg

Independence

= Two variables are independent in a joint distribution if:

P(X,Y) = P(X)P(Y)
X1UlY

Vo,y P(x,y) = P(x)P(y)

= Says the joint distribution factors into a product of two simple ones
= Usually variables aren’t independent!

= Can use independence as a modeling assumption
= Independence can be a simplifying assumption
= Empirical joint distributions: at best “close” to independent
= What could we assume for {Weather, Traffic, Cavity}?

" |ndependence is like something from CSPs: what?

Pi(T, W)

T W P
hot sun 0.4
hot rain 0.1
cold sun 0.2
cold rain 0.3

Example: Independence?

Ps (T7 W) —
T W P
hot sun 0.3
hot rain 0.2
cold sun 0.3
cold rain 0.2

P(T)
T P
hot 0.5
cold 0.5
P(W)
W P
sun 0.6
rain 0.4

Conditional Independence

= Unconditional (absolute) independence very rare (why?)

" Conditional independence is our most basic and robust form
of knowledge about uncertain environments.

= X is conditionally independent of Y given Z XJ_|_Y|Z

if and only if:
Vz,y,z 1 P(z,ylz) = P(z|z) P(y|z)
or, equivalently, if and only if

Va,y, 2 P(z]z,y) = P(a|2)

You should feel comfortable with equations
(g 1€) = P01 POIED
(
P \'; 9(%\%>éswf M

f)(X\Z‘\I /\?wi

";> \ /\/_7 (,\"C)p‘k\(\75 ?(\/)%) f(%)

¥Ry TR - T
(\D‘ﬁi‘b f?(Y(%D - P(\((jc) m
- P(X\%B

36

Forwards and backwards

37

Probability Recap

" - P(x,y) Bayes’ Rule
Conditional probability P(zly) =
P(y) P(xly) = PP
Product rule P(z,y) = P(z|y)P(y)
Chain rule P(X1,Xo,...Xpn) = P(X1)P(X3|X1)P(X3|X1,X3)...
= H P(Xi|X17°'°7Xi—1)
=1
X, Y independent if and only if: Vz,y : P(z,y) = P(z)P(y)
X and Y are conditionally independent given Z if and only if: X1Y|Z

Va,y,z 1 Px,y|z) = P(x]z)P(y|2)

Markov Decision Processes

An MDP is defined by:

m Asetofstatess €S
m AsetofactionsaceA
= A transition function T(s, a, s’)

= Probability that a from sleadsto s’, i.e., P(s’| s, a)
= Also called the model or the dynamics

A reward function R(s, a, s’)
= Sometimes just R(s) or R(s’)

A start state

Maybe a terminal state

Discount factor y

MDPs are non-deterministic search problems

= One way to solve them is with expectimax search
= Policy Iteration and Value Iteration

[Demo — gridworld manual intro (L8D1)]

What is Markov about MDPs?

= “Markov” generally means that given the present state, the
future and the past are independent

= For Markov decision processes, “Markov” means action
outcomes depend only on the current state

P(Si41 = 8|St = s¢, Ay = ay, S;=1 =5~ 1, A=15 . ~So-—=-50)
= P(St—|—1 — 3/|St = 54, Ay = CLt)

—_—

Andrey Markov
(1856-1922)

= This is just like search, where the successor function could only
depend on the current state (not the history)

Important Quantities

"= The value (utility) of a state s:

V(s) = expected utility starting in s and sis
acting optimally state
a” (s,a)isa
" The value (utility) of a g-state (s,a): v g-state
Q' (s,a) = expected utility starting out N
having taken action a from state s and (s,a,8') is a
transition

(thereafter) acting optimally

" The optimal policy:
n"(s) = optimal action from state s

[Demo — gridworld values (L8D4)]

Bellman Equations

* Fundamental operation: compute the (expectimax) value of a state
= Expected utility under optimal action
= Average sum of (discounted) rewards
" This is just what expectimax computed!

= Recursive definition of value: ,
V*(s) = maxQ*(s,a)

Q*(s,a) => T(s,a, s {R(s, a,s’) + *yV*(s’)]

V*i(s) = mCELBXZT(S, a,s’) {R(s,a, ") + ’)/V*(S')}

S

Value lteration

Start with V,(s) = 0: no time steps left means an expected reward sum of zero

Given vector of V,(s) values, do one ply of expectimax from each state:

Viet1(s) <+ mC?XZT(S, a,s’) {R(s,a, s + W/Vk(sl)}

5 Bellman Update Equation

Repeat until convergence

Complexity of each iteration: O(S?A)

Theorem: will converge to unique optimal values
= Basic idea: approximations get refined towards optimal values
= Policy may converge long before values do

Policy Iteration

= Alternative approach for optimal values:

= Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal
utilities!) until convergence

= Step 2: Policy improvement: update policy using one-step look-ahead with resulting
converged (but not optimal!) utilities as future values

= Repeat steps until policy converges

= This is policy iteration
" |t's still optimal!

= Can converge (much) faster under some conditions

Policy Iteration

» Evaluation: For fixed current policy =, find values with policy evaluatlon @\?\(S A)
" [terate until values converge: /ﬁﬁ) =

V() DT m().) [AG e, 8) + 7 V()] V5

=" |mprovement: For fixed values, get a better policy using policy extraction

= One-step look-ahead: @jt(s &)
/\’/—
mi4+1(s) = arg CI;naXZT(s, a,s’) [R(s, a,s’) + ’yV”Ti(SI)}
8,

= What about Q-values?

Monte Carlo Value Estimation

" Use actual experience of interactions with the environment.
= Environment could be the real world or a simulation.
= Building a simulator is often easier than fully specifying T(s,a,s’)
» Works with continuous states and actions

|)
/

> \1/(._)5? -
Initialize: \/(S P

m < policy to be evaluated
V' « an arbitrary state-value function
Returns(s) < an empty list, for all s € §

Repeat forever: \(b\\ﬂ»}V
(a) Generate an episode using
(b) For each state s appearing in the episode:
R « return following the first occurrence of s
Append R to Returns(s)
V(s) « average(Returns(s))

Example

" Estimate the value of a state V(s) given a policy m without
complete knowledge of the transition function T

48

Types of Machine Learning

= Supervised Learning
= Classification

= Regression

Decision Rules

Linear Classifiers

" |nputs are feature values
= Each feature has a weight
= Sum is the activation

activationy(z) =) w; - fi(z) =w - f(x)

= |f the activation is: T
1
= Positive, output +1 2, Y =>0?—
= Negative, output -1 ', ——

Learning: Binary Perceptron

= Start with weights =0
" For each training instance:
= Classify with current weights
y*f
)+ i we f(x) >0
y_{—1 if w- f(z)<0 /

= |f correct (i.e., y=y*), no change!

= |f wrong: adjust the weight vector by
adding or subtracting the feature

vector. Subtract if y* is -1.
Before update w' f(x) > 0 and y* = —1

W = W _|_ y* . f After update
(w—7F@) Fx) =wTf(x) — FCOTF(x) < wTf(x)

Properties of Perceptrons

. . . Separable
= Separability: true if some parameters get the training set P
perfectly correct .
- vy,
= Convergence: if the training is separable, perceptron will - +
eventually converge (binary case) -

= Mistake Bound: the maximum number of mistakes (binary

case) related to the margin or degree of separability Non-Separable

How to get probabilistic decisions?

Perceptron scoring: 2z = w - f(x)
f z=w-f(x) verypositive 2 want probability going to 1

f z=w-f(x) verynegative 2 want probability going to 0

Sigmoid function A
P(z) = 1T ez

e

P(2) = T f—]

A 1D Example

P(red|x)
| 12
S
[
=1 almost 1.0
B
A
|
almost 0.0
_— I
— ® O o—0 0 0 0606 606 6 O
\ J \ J \ J L
Y Y Y
definitely blue not sure definitely red

probability increases exponentially
eWred T < aswemove away from boundary

P(red|x) =

eWred T + eWblue T h normalizer

The Soft Max

SWred T

]f(red|a:) .

eOWred T + edWhlue T

6100wred s

610O'wred-az + elOOwblue-m

« —— looks like max, wy, -

ewred "L

ewred ‘T —|_ ewblue L

-@ O o —0 0 0 0606 00 ¢ C

ewred * &L

ewred L —l_ ewblue L

P(red|z) =

Multiclass Logistic Regression

w1 - f biggest
= Recall Perceptron: w1
= A weight vector for each class: Wy
= Score (activation) of a class y: Wy - f(:l?) w3
w2
= Prediction highest score wins ¢y = arg max Wy - f(x) ws - f w3 f
Y biggest biggest
= How to make the scores into probabilities?
Z Z Z
e~l e~? e~s

Z1,22,23 —7) y
e°l + e*2 + e*3 e*l 4 e*2 - e*3 e*l 4 e*2 4 e*3

| l L J
| Y

original activations softmax activations

Best w?

= Maximum likelihood estimation:

max [l(w) = max ZlogP(y(i)\x(i);w)

w

oWy () f(z(D)

. (4) [(D). o)) —
with: Py |z w) Zyewy‘f(x(i))

= Multi-Class Logistic Regression

How do we learn in this setting?
= Optimization
= j.e., how do we solve:

w

max [l[(w) = max ZlogP(y(i)\x(i);w)

Linear Regression

" How can we measure how good a set of weights w are?
" Mean Squared Error

N N
1 1 1 1
Lyse(w) = NZ:E(JG’ — }A’i)z = sz (Yi — WTf(X))Z
i=1 =1

aLM.S'E

z(wa(x) Vi)

Optimization via Hill Climbing

Source: offconvex.org

Mini-Batch Gradient Ascent on the Log Likelihood Objective

w

max [l(w) = max ZlogP(y(i)\az(i);w]

Observation: gradient over small set of training examples (=mini-batch)
can be computed in parallel, might as well do that instead of a single one

initw
for 1ter = 1, 2,
pick random subset of training examples J

W W+ o % ZVlogP(y(j)\x(j);w]
j€J

Multi-class Logistic Regression

special case of neural network

f1(x)
e*1
Zl —» S 5 P(y1|$?w) - ezl _|_622 +623
fz(x) ©
f
e*2
2 o F e Pl =
f3(x) m el + e*2 4 e*s
a
X 623

fi(x)

Deep Neural Network = Also learn the features!

f1(x)
P
2 ol s b Plalsw) =
f,(x) O
f
2, — P P(plrw)=——
f3(x) 2 m ! e*1 4 e*2 + e*3
a
X e~3

23 P(y3|$7w) - e*1 4 e*2 4+ %3

fi(x)

Deep Neural Network = Also learn the features!

21 2 (f,(x)
(1) (2) o1
— f
25 25 24 ()
2 1
Z%lj ng) zg f3(x)
(1) (2) o
21, Zrc(2) 20 fiex)

ka) — g(E Wz(,l;_ 1’k) Z](-k_ 1)] g = nonlinear activation function
J

Deep Neural Network = Also learn the features!

1 <1 ~1
Z1
oury s, Pyi|zw) = ¢
~ yl ? z z z
(1) (2) (n) 1 . et +e7 + e
'Z2 ZQ Z2
f
2 (’!’L) (OUT) t —> P(y2|$,’w) = e”
ngl) Z-%) Zr_} Zo m %1 + e?2 4 %3
a
z
U ¥ s P(ylaiw) =
g) el | e72 | o7
(1) (2) (n)
27465 e (2 Z e inf

Z,L(k) — g(E Wz(,l;_ 1’k) Z](-k_ 1)] g = nonlinear activation function

7

Deep Neural Networks for Regression

Z'I Z-I 21
Z1(OUT
1 2
Zé) Zg) zgnil
1 (2) (n—1,
zg) 23 2%
Minimize MSE loss via
Gradient descent.
(1) (2) .
%6 PR 2 K’(n

N N
1 1 1 1
Lysg(w) = NZ > i = yi)? = Nz > (i —=wTF ()
i=1 i=1

Deep Neural Networks for Regression

1 9 -
(outT . A
<1
(1) (2 et (n) Y1
,Z2 22 ZQ ’ Z2
(OUT)p
1 2 n—1) (n) z 2
z%) ng) 2 ~3 .
N\
(1) (2) e (n)
%6 PR 2 Z K ()

	Slide 1: CS 4300/6300: Artificial Intelligence
	Slide 2: Midterm Logistics
	Slide 3: Topics you’ll need to know
	Slide 4
	Slide 5: Search Problems
	Slide 6: Graph Search Pseudo-Code
	Slide 7: A-star: Combining UCS and Greedy
	Slide 8: Admissible Heuristics
	Slide 9: Consistency of Heuristics
	Slide 10: Adversarial Search
	Slide 11: Minimax Values
	Slide 12: Minimax Implementation
	Slide 13: Minimax Example
	Slide 14: Alpha-Beta Implementation
	Slide 15: Alpha-Beta Quiz
	Slide 16: Alpha-Beta Example 2
	Slide 17: Uncertain Search
	Slide 18: Expectimax Pseudocode
	Slide 19: Expectimax Pseudocode
	Slide 20: Mixed Layer Types
	Slide 21: Probability
	Slide 22: Probability Distributions
	Slide 23: Joint Distributions
	Slide 24: Quiz: Events
	Slide 25: Marginal Distributions
	Slide 26: Quiz: Marginal Distributions
	Slide 27: Conditional Probabilities
	Slide 28: Quiz: Conditional Probabilities
	Slide 29: The Product Rule
	Slide 30: The Product Rule
	Slide 31: The Chain Rule
	Slide 32: Bayes’ Rule
	Slide 33: Independence
	Slide 34: Example: Independence?
	Slide 35: Conditional Independence
	Slide 36: You should feel comfortable with equations
	Slide 37: Forwards and backwards
	Slide 38: Probability Recap
	Slide 39: Markov Decision Processes
	Slide 40: What is Markov about MDPs?
	Slide 41: Important Quantities
	Slide 42: Bellman Equations
	Slide 43: Value Iteration
	Slide 44: Policy Iteration
	Slide 45: Policy Iteration
	Slide 46: Monte Carlo Value Estimation
	Slide 47
	Slide 48: Example
	Slide 49: Types of Machine Learning
	Slide 50: Decision Rules
	Slide 51: Linear Classifiers
	Slide 52: Learning: Binary Perceptron
	Slide 53: Properties of Perceptrons
	Slide 54: How to get probabilistic decisions?
	Slide 55: A 1D Example
	Slide 56: The Soft Max
	Slide 57: Multiclass Logistic Regression
	Slide 58: Best w?
	Slide 59: How do we learn in this setting?
	Slide 60: Linear Regression
	Slide 61: Optimization via Hill Climbing
	Slide 63: Mini-Batch Gradient Ascent on the Log Likelihood Objective
	Slide 64: Multi-class Logistic Regression
	Slide 65: Deep Neural Network = Also learn the features!
	Slide 66: Deep Neural Network = Also learn the features!
	Slide 67: Deep Neural Network = Also learn the features!
	Slide 68: Deep Neural Networks for Regression
	Slide 69: Deep Neural Networks for Regression

