
CS 4300/6300: Artificial Intelligence

Midterm Review



Midterm Logistics

▪ In our classroom during normal class time

▪ Thursday 12:25-1:45

▪ 1 sheet of notes (front and back)

▪ Calculator allowed but math will be simple and easy to do by 
hand
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Topics you’ll need to know

▪ A*

▪ Consistent/admissible heuristics

▪ Min-Max search

▪ Alpha-Beta pruning

▪ Expectimax

▪ Probability 

▪ conditional prob

▪ Independence

▪ Bayes’ rule

▪ chain rule
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▪ MDPs

▪ Value Iteration

▪ Policy Iteration

▪ Monte Carlo estimation

▪ Machine Learning 

▪ Perceptron

▪ Classification 

▪ Regression
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Search Problems

▪ A search problem consists of:

▪ A state space

▪ A successor function
 (with actions, costs)

▪ A start state and a goal test

▪ A solution is a sequence of actions (a plan) which 
transforms the start state to a goal state

“N”, 1.0

“E”, 1.0



Graph Search Pseudo-Code

if STATE[child-node] is not in closed then



A-star: Combining UCS and Greedy

▪ Uniform-cost orders by path cost, or backward cost  g(n)

▪ Greedy orders by goal proximity, or forward cost  h(n)

▪ A* Search orders by the sum: f(n) = g(n) + h(n)
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Admissible Heuristics

▪ A heuristic h is admissible (optimistic) if:

 where               is the true cost to a nearest goal

▪ Examples:

▪ Coming up with admissible heuristics is most of what’s involved 
in using A* in practice.
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Consistency of Heuristics

▪ Main idea: estimated heuristic costs ≤ actual costs

▪ Admissibility: heuristic cost ≤ actual cost to goal

  h(A) ≤ actual cost from A to G

▪ Consistency: heuristic “arc” cost ≤ actual cost for each arc

  h(A) – h(C) ≤ cost(A to C)

▪ Consequences of consistency:

▪ The f value along a path never decreases

   h(A) ≤ cost(A to C) + h(C)

▪ A* graph search is optimal
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Adversarial Search
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Minimax Values

+8-10-5-8

States Under Agent’s Control:

Terminal States:

States Under Opponent’s Control:



Minimax Implementation

def min-value(state):
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor))
return v



Minimax Example

12 8 14 53 2 24 6



Alpha-Beta Implementation

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, value(successor, α, β))
if v ≤ α return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, value(successor, α, β))
if v ≥ β return v
α = max(α, v)

return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root

At root you should 

initialize 𝛼 = −∞ 

and 𝛽 = +∞



Alpha-Beta Quiz



Alpha-Beta Example 2



Uncertain Search
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Expectimax Pseudocode

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is EXP: return exp-value(state)

def exp-value(state):
initialize v = 0
for each successor of state:
  p = probability(successor)

v += p * value(successor)
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v



Expectimax Pseudocode

def exp-value(state):
initialize v = 0
for each successor of state:
  p = probability(successor)

v += p * value(successor)
return v 5 78 24 -12

1/2
1/3

1/6

v = (1/2) (8) + (1/3) (24) + (1/6) (-12) = 10



Mixed Layer Types

▪ E.g. Backgammon

▪ Expectiminimax

▪ Environment is an 
extra “random 
agent” player that 
moves after each 
min/max agent

▪ Each node 
computes the 
appropriate 
combination of its 
children

4    -2   3     7       1     5    11    -5



Probability
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Shorthand notation:

OK if all domain entries are unique

Probability Distributions

▪ Unobserved random variables have distributions

▪ A distribution is a TABLE of probabilities of values

▪ A probability (lower case value) is a single number

▪ Must have:                                                 and

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.1

fog 0.3

meteor 0.0



Joint Distributions

▪ A joint distribution over a set of random variables:
 specifies a real number for each assignment (or outcome): 

▪ Must obey:

▪ Size of distribution if n variables with domain sizes d?

▪ For all but the smallest distributions, impractical to write out!

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3



Quiz: Events

▪ P(+x, +y) ?

▪ P(+x) ?

▪ P(-y OR +x) ?

 

X Y P

+x +y 0.2

+x -y 0.3

-x +y 0.4

-x -y 0.1



Marginal Distributions

▪ Marginal distributions are sub-tables which eliminate variables 

▪ Marginalization (summing out): Combine collapsed rows by adding

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4



Quiz: Marginal Distributions

X Y P

+x +y 0.2

+x -y 0.3

-x +y 0.4

-x -y 0.1

X P

+x

-x

Y P

+y

-y



Conditional Probabilities

▪ A simple relation between joint and conditional probabilities
▪ In fact, this is taken as the definition of a conditional probability

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

P(b)P(a)

P(a,b)



Quiz: Conditional Probabilities

X Y P

+x +y 0.2

+x -y 0.3

-x +y 0.4

-x -y 0.1

▪ P(+x | +y) ?

▪ P(-x | +y) ?

▪ P(-y | +x) ?

 



The Product Rule

▪ Sometimes have conditional distributions but want the joint



The Product Rule

▪ Example:

R P

sun 0.8

rain 0.2

D W P

wet sun 0.1

dry sun 0.9

wet rain 0.7

dry rain 0.3

D W P

wet sun 0.08

dry sun 0.72

wet rain 0.14

dry rain 0.06



The Chain Rule

▪ More generally, can always write any joint distribution as an 
incremental product of conditional distributions

▪ You can pick any order.

▪ Why is the Chain Rule always true?



Bayes’ Rule

▪ Two ways to factor a joint distribution over two variables:

▪ Dividing, we get:

▪ Why is this at all helpful?

▪ Lets us build one conditional from its reverse
▪ Often one conditional is tricky but the other one is simple
▪ Foundation of many systems (e.g. ASR, MT, IRL)

▪ In the running for most important AI equation!

Thomas Bayes

That’s my rule!

http://en.wikipedia.org/wiki/Image:Thomasbayes.jpg


Independence

▪ Two variables are independent in a joint distribution if:

▪ Says the joint distribution factors into a product of two simple ones

▪ Usually variables aren’t independent!

▪ Can use independence as a modeling assumption
▪ Independence can be a simplifying assumption

▪ Empirical  joint distributions: at best “close” to independent

▪ What could we assume for {Weather, Traffic, Cavity}?

▪ Independence is like something from CSPs: what?



Example: Independence?

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T W P

hot sun 0.3

hot rain 0.2

cold sun 0.3

cold rain 0.2

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4



Conditional Independence

▪ Unconditional (absolute) independence very rare (why?)

▪ Conditional independence is our most basic and robust form 
of knowledge about uncertain environments.

▪ X is conditionally independent of Y given Z

      if and only if:

      or, equivalently, if and only if



You should feel comfortable with equations
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Forwards and backwards
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Probability Recap

▪ Conditional probability

▪ Product rule

▪ Chain rule 

▪ X, Y independent if and only if:

▪ X and Y are conditionally independent given Z if and only if:

Bayes’ Rule

  𝑃 𝑥 𝑦 =
𝑃(𝑦|𝑥)𝑃 𝑥

𝑃(𝑦)



Markov Decision Processes

▪ An MDP is defined by:
▪ A set of states s  S
▪ A set of actions a  A
▪ A transition function T(s, a, s’)

▪ Probability that a from s leads to s’, i.e., P(s’| s, a)
▪ Also called the model or the dynamics

▪ A reward function R(s, a, s’) 
▪ Sometimes just R(s) or R(s’)

▪ A start state
▪ Maybe a terminal state
▪ Discount factor 𝛾

▪ MDPs are non-deterministic search problems
▪ One way to solve them is with expectimax search
▪ Policy Iteration and Value Iteration

[Demo – gridworld manual intro (L8D1)]



What is Markov about MDPs?

▪ “Markov” generally means that given the present state, the 
future and the past are independent

▪ For Markov decision processes, “Markov” means action 
outcomes depend only on the current state

▪ This is just like search, where the successor function could only 
depend on the current state (not the history)

Andrey Markov 
(1856-1922)



Important Quantities

▪ The value (utility) of a state s:
V*(s) = expected utility starting in s and 

acting optimally

▪ The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out 

having taken action a from state s and 
(thereafter) acting optimally

▪ The optimal policy:
*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a 
transition

s,a,s’

s is a 
state

(s, a) is a 
q-state

[Demo – gridworld values (L8D4)]



Bellman Equations

▪ Fundamental operation: compute the (expectimax) value of a state

▪ Expected utility under optimal action

▪ Average sum of (discounted) rewards

▪ This is just what expectimax computed!

▪ Recursive definition of value:

a

s

s, a

s,a,s’

s’



Value Iteration

▪ Start with V0(s) = 0: no time steps left means an expected reward sum of zero

▪ Given vector of Vk(s) values, do one ply of expectimax from each state:

▪ Repeat until convergence

▪ Complexity of each iteration: O(S2A)

▪ Theorem: will converge to unique optimal values
▪ Basic idea: approximations get refined towards optimal values
▪ Policy may converge long before values do

a

Vk+1(s)

s, a

s,a,s’

Vk(s’)

Bellman Update Equation



Policy Iteration

▪ Alternative approach for optimal values:

▪ Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal 
utilities!) until convergence

▪ Step 2: Policy improvement: update policy using one-step look-ahead with resulting 
converged (but not optimal!) utilities as future values

▪ Repeat steps until policy converges

▪ This is policy iteration

▪ It’s still optimal!

▪ Can converge (much) faster under some conditions



Policy Iteration

▪ Evaluation: For fixed current policy , find values with policy evaluation:
▪ Iterate until values converge:

▪ Improvement: For fixed values, get a better policy using policy extraction
▪ One-step look-ahead:

▪ What about Q-values?



Monte Carlo Value Estimation

▪ Use actual experience of interactions with the environment.

▪ Environment could be the real world or a simulation.

▪ Building a simulator is often easier than fully specifying T(s,a,s’)

▪ Works with continuous states and actions 



47



Example

▪ Estimate the value of a state V(s) given a policy 𝜋 without 
complete knowledge of the transition function T
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Types of Machine Learning

▪ Supervised Learning

▪ Classification

▪ Regression



Decision Rules



Linear Classifiers

▪ Inputs are feature values

▪ Each feature has a weight

▪ Sum is the activation

▪ If the activation is:
▪ Positive, output +1

▪ Negative, output -1


f1

f2

f3

w1

w2

w3

>0?



Learning: Binary Perceptron

▪ Start with weights = 0

▪ For each training instance:

▪ Classify with current weights

▪ If correct (i.e., y=y*), no change!

▪ If wrong: adjust the weight vector by 
adding or subtracting the feature 
vector. Subtract if y* is -1.

Before update 𝑤𝑇𝑓 𝑥 > 0 and 𝑦∗ = −1

After update

𝑤 − 𝑓 𝑥
𝑇
𝑓 𝑥 = 𝑤𝑇𝑓 𝑥 − 𝑓 𝑥 𝑇𝑓 𝑥 < 𝑤𝑇𝑓 𝑥



Properties of Perceptrons

▪ Separability: true if some parameters get the training set 
perfectly correct

▪ Convergence: if the training is separable, perceptron will 
eventually converge (binary case)

▪ Mistake Bound: the maximum number of mistakes (binary 
case) related to the margin or degree of separability

Separable

Non-Separable



How to get probabilistic decisions?

▪ Perceptron scoring:

▪ If           very positive → want probability going to 1

▪ If            very negative → want probability going to 0

▪ Sigmoid function



A 1D Example

definitely blue definitely rednot sure

probability increases exponentially 

as we move away from boundary

normalizer



The Soft Max



Multiclass Logistic Regression

▪ Recall Perceptron:
▪ A weight vector for each class:

▪ Score (activation) of a class y:

▪ Prediction highest score wins

▪ How to make the scores into probabilities? 

original activations softmax activations



Best w? 

▪ Maximum likelihood estimation:

with:

= Multi-Class Logistic Regression



How do we learn in this setting?

▪ Optimization

▪ i.e., how do we solve:



Linear Regression

▪ How can we measure how good a set of weights 𝑤 are?

▪ Mean Squared Error
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1
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Optimization via Hill Climbing

Source: offconvex.org



Mini-Batch Gradient Ascent on the Log Likelihood Objective

init 𝑤 

for iter = 1, 2, …

pick random subset of training examples J

Observation: gradient over small set of training examples (=mini-batch) 
can be computed in parallel, might as well do that instead of a single one



Multi-class Logistic Regression

special case of neural network

z1

z2

z3

f1(x)

f2(x)

f3(x)

fK(x)
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Deep Neural Network = Also learn the features!

z1

z2

z3

f1(x)

f2(x)

f3(x)

fK(x)

s
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m
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x
…



Deep Neural Network = Also learn the features!

f1(x)

f2(x)

f3(x)

fK(x)

s

o

f
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x1

x2

x3

xL

… … … …

…

g = nonlinear activation function
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Deep Neural Network = Also learn the features!

x1

x2

x3

xL

… … …

g = nonlinear activation function

…



Deep Neural Networks for Regression

…

x1

x2

x3

xL

… … … …

…
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Minimize MSE loss via 

Gradient descent.



Deep Neural Networks for Regression

…

x1

x2

x3

xL

… … … …

…

ො𝑦1

ො𝑦2

ො𝑦2
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