
Announcements

▪ Gradescope
▪ You must assign questions to page numbers when you submit so the 

TAs can easily find your answers.

▪ You will get a 0 otherwise!

▪ HW4 due today!

▪ P2 due on Thursday!

▪ Midterm next week!



CS 188: Artificial Intelligence

Optimization and Neural Nets

Instructor: Anca Dragan --- University of California, Berkeley
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.]



Reminder: Linear Classifiers

▪ Inputs are feature values

▪ Each feature has a weight

▪ Sum is the activation

▪ If the activation is:
▪ Positive, output +1

▪ Negative, output -1 Σ
f1

f2

f3

w1

w2

w3

>0?



Feature Vectors
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Learning: Binary Perceptron

▪ Start with weights = 0
▪ For each training instance:

▪ Classify with current weights

▪ If correct (i.e., y=y*), no change!
▪ If wrong: adjust the weight vector 

by adding or subtracting the feature 
vector. Subtract if y* is -1.

Before update 𝑤𝑇𝑓 𝑥 > 0 and 𝑦∗ = −1

After update

𝑤 − 𝑓 𝑥
𝑇
𝑓 𝑥 = 𝑤𝑇𝑓 𝑥 − 𝑓 𝑥 𝑇𝑓 𝑥 < 𝑤𝑇𝑓 𝑥



Multiclass Decision Rule

▪ If we have multiple classes:
▪ A weight vector for each class:

▪ Score (activation) of a class y:

▪ Prediction highest score wins

Binary = multiclass where the negative class has weight zero



Learning: Multiclass Perceptron

▪ Start with all weights = 0
▪ Pick up training examples one by one
▪ Predict with current weights

▪ If correct, no change!
▪ If wrong: lower score of wrong answer, 

raise score of right answer



Problems with the Perceptron

▪ Noise: if the data isn’t separable, 
weights might thrash

▪ Averaging weight vectors over time 
can help (averaged perceptron)

▪ Mediocre generalization: finds a 
“barely” separating solution

▪ Overtraining: test / held-out 
accuracy usually rises, then falls

▪ Overtraining is a kind of overfitting



Improving the Perceptron



Non-Separable Case: Probabilistic Decision

0.5 | 0.5

0.3 | 0.7
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How to get probabilistic decisions?

▪ Perceptron scoring:

▪ If very positive → want probability going to 1

▪ If  very negative → want probability going to 0

▪ Sigmoid function



A 1D Example

definitely blue definitely rednot sure

probability increases exponentially 

as we move away from boundary

normalizer



The Soft Max



Multiclass Logistic Regression

▪ Recall Perceptron:
▪ A weight vector for each class:

▪ Score (activation) of a class y:

▪ Prediction highest score wins

▪ How to make the scores into probabilities? 

original activations softmax activations



Best w? 

▪ Maximum likelihood estimation:

with:

= Multi-Class Logistic Regression



How do we learn in this setting?

▪ Optimization

▪ i.e., how do we solve:



Hill Climbing

▪ Simple, general idea
▪ Start wherever

▪ Repeat: move to the best neighboring state

▪ If no neighbors better than current, quit

▪ What’s particularly tricky when hill-climbing for multiclass 
logistic regression?
• Optimization over a continuous space

• Infinitely many neighbors!

• How to do this efficiently?



Optimization

Source: offconvex.org



Gradient Ascent

▪ Perform update in uphill direction for each coordinate

▪ The steeper the slope (i.e. the higher the derivative) the bigger the step 
for that coordinate

▪ E.g., consider: 

▪ Updates: ▪ Updates in vector notation:

with: = gradient



▪ Idea: 

▪ Start somewhere

▪ Repeat:  Take a step in the gradient direction

Gradient Ascent

Figure source: Mathworks



Gradient in n dimensions



Optimization Procedure: Gradient Ascent

▪ Init 𝑤

▪ for iter = 1, 2, …

▪ 𝛼: learning rate --- tweaking parameter that needs to be 
chosen carefully

▪ How? Try multiple choices



Batch Gradient Ascent on the Log Likelihood Objective

▪ init 𝑤

▪ for iter = 1, 2, …



Stochastic Gradient Ascent on the Log Likelihood Objective

▪ init 𝑤
▪ for iter = 1, 2, …

▪ pick random j

Observation: once gradient on one training example has been 
computed, might as well incorporate before computing next one



Mini-Batch Gradient Ascent on the Log Likelihood Objective

▪ init𝑤

▪ for iter = 1, 2, …

▪ pick random subset of training examples J

Observation: gradient over small set of training examples (=mini-batch) 
can be computed in parallel, might as well do that instead of a single one



Regression

𝑦



Linear Regression

▪ Learn to map from inputs 𝑥 to outputs 𝑦 ∈ ℝ

▪ ො𝑦 = 𝑤𝑇𝑓(𝑥) = 𝑤 ∘ 𝑓(𝑥) = σ𝑖=1
𝑑 𝑤𝑖 ⋅ 𝑥𝑖

▪ Where 𝑓(𝑥) maps from the raw input x into a set of features

▪ How can we measure how good a set of weights 𝑤 are?
▪ Loss Function

▪ Squared Error

ℒ 𝑤 =
1

2
𝑦 − ො𝑦 2 =

1

2
𝑦 − 𝑤𝑇𝑓 𝑥

2



Linear Regression



▪ We want to find w that minimizes this loss function

▪ Calculus to the rescue! 

ℒ 𝑤 =
1

2
𝑦 − ො𝑦 2 =

1

2
𝑦 − 𝑤𝑇𝑓 𝑥

2

𝜕ℒ

𝜕𝑤𝑖
= − 𝑦 − 𝑤𝑇𝑓 𝑥 𝑓𝑖 𝑥 = 𝑤𝑇𝑓 𝑥 − 𝑦 𝑓𝑖 𝑥



Linear Regression

▪ How can we measure how good a set of weights 𝑤 are?
▪ Mean Squared Error

ℒ𝑀𝑆𝐸 𝑤 =
1

𝑁
෍

𝑖=1

𝑁
1
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How to optimize?

▪ Gradient Descent

▪ Usually we will use stochastic gradient descent using mini-
batches, just like we talked about for classification.

▪ Init 𝑤

▪ for iter = 1, 2, …

𝑤 ← 𝑤 − 𝛼 ⋅ ∇ℒ(𝑤)



Non-Linear Regression?

𝑦



Neural Networks



History Lesson

▪ 1943: Artificial Neuron
▪ McCulloch and Pitts showed simple threshold logic

▪ 1957: Perceptron
▪ Rosenblatt introduced algorithm for single-layer neural network

▪ Explored “Multi-Layer Perceptrons” but lacked good learning 
algorithms

▪ 1969: AI Winter
▪ Minsky and Papert publish book called “Perceptrons”



History Lesson

▪ 1986: Backpropagation
▪ Rumelhart, Hinton, and Williams show power of multi-layer 

perceptrons trained via backpropagation

▪ Early 2010s: Hardware and algorithms converge with big data

▪ 2012: AlexNet and the image recognition breakthrough

▪ 2012–present: The deep learning era



Performance

graph credit Matt 

Zeiler, Clarifai
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Multi-class Logistic Regression

▪ = special case of neural network
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Deep Neural Network = Also learn the features!
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Deep Neural Network = Also learn the features!
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Deep Neural Network = Also learn the features!
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Common Activation Functions

[source: MIT 6.S191 introtodeeplearning.com] 



Deep Neural Network: Also Learn the Features!

▪ Training the deep neural network is just like logistic regression:

just w tends to be a much, much larger vector 

▪ just run gradient ascent 

+ stop when log likelihood of hold-out data starts to decrease



Deep Neural Networks for Regression
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Neural Networks Properties

▪ Theorem (Universal Function Approximators).  A two-layer neural 
network with a sufficient number of neurons can approximate 
any continuous function to any desired accuracy.



Fun Neural Net Demo Site

▪ Demo-site:

▪ http://playground.tensorflow.org/

http://playground.tensorflow.org/
http://playground.tensorflow.org/


▪ Derivatives tables:

How about computing all the derivatives?

[source:  http://hyperphysics.phy-astr.gsu.edu/hbase/Math/derfunc.html



How about computing all the derivatives?

■ But neural net f is never one of those?

■ No problem: CHAIN RULE:

If 

Then

Derivatives can be computed by following well-defined procedures



▪ Automatic differentiation software 

▪ e.g. PyTorch, TensorFlow, Jax

▪ Only need to program the function g(x,y,w)

▪ Can automatically compute all derivatives w.r.t. all entries in w

▪ This is typically done by caching info during forward computation pass 
of f, and then doing a backward pass = “backpropagation”

▪ Autodiff / Backpropagation can often be done at computational cost 
comparable to the forward pass

▪ Need to know this exists

▪ How this is done?  -- outside of scope of our class 

Automatic Differentiation
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