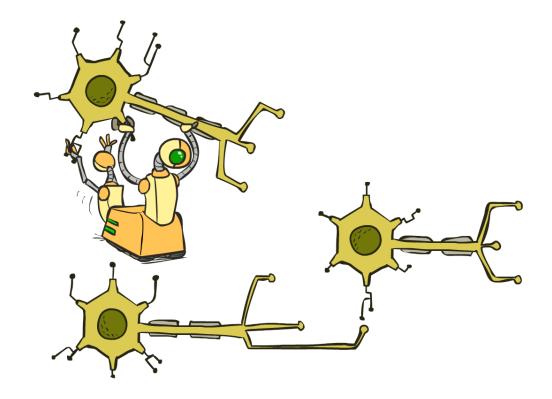
Announcements

Gradescope

- You must assign questions to page numbers when you submit so the TAs can easily find your answers.
- You will get a 0 otherwise!
- HW4 due today!
- P2 due on Thursday!
- Midterm next week!

CS 188: Artificial Intelligence

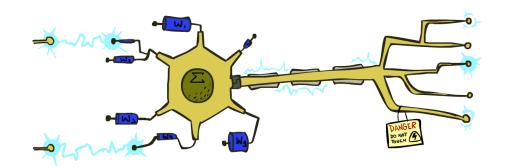
Optimization and Neural Nets



Instructor: Anca Dragan --- University of California, Berkeley

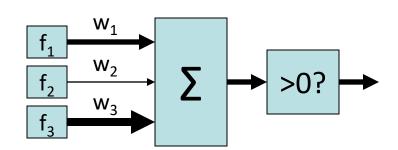
Reminder: Linear Classifiers

- Inputs are feature values
- Each feature has a weight
- Sum is the activation



$$activation_w(x) = \sum_i w_i \cdot f_i(x) = w \cdot f(x)$$

- If the activation is:
 - Positive, output +1
 - Negative, output -1



Feature Vectors

f(x)# free : 2
YOUR_NAME : 0
MISSPELLED : 2 Hello, **SPAM** Do you want free printr or cartriges? Why pay more FROM_FRIEND : 0 when you can get them Not ABSOLUTELY FREE! Just **SPAM** PIXEL-7,12 : 1 PIXEL-7,13 : 0 NUM_LOOPS : 1

Feature Vectors

f(x)# free : 2
YOUR_NAME : 0
MISSPELLED : 2 Hello, **SPAM** Do you want free printr or cartriges? Why pay more FROM_FRIEND : 0 when you can get them Not ABSOLUTELY FREE! Just **SPAM** PIXEL-7,12 : 1 PIXEL-7,13 : 0 NUM_LOOPS : 1

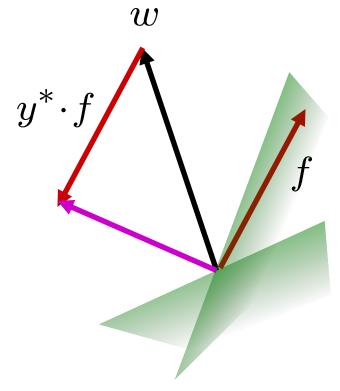
Learning: Binary Perceptron

- Start with weights = 0
- For each training instance:
 - Classify with current weights

$$y = \begin{cases} +1 & \text{if } w \cdot f(x) \ge 0 \\ -1 & \text{if } w \cdot f(x) < 0 \end{cases}$$

- If correct (i.e., y=y*), no change!
- If wrong: adjust the weight vector by adding or subtracting the feature vector. Subtract if y* is -1.

$$w = w + y^* \cdot f$$



Before update $w^T f(x) > 0$ and $y^* = -1$

After update
$$(w - f(x))^T f(x) = w^T f(x) - f(x)^T f(x) < w^T f(x)$$

Multiclass Decision Rule

- If we have multiple classes:
 - A weight vector for each class:

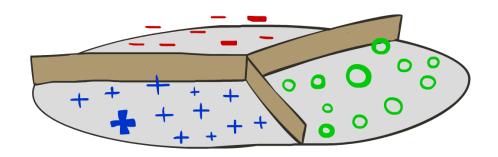
$$w_y$$

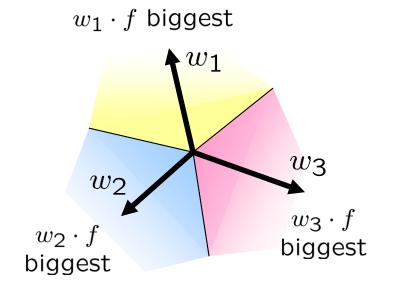
Score (activation) of a class y:

$$w_y \cdot f(x)$$

Prediction highest score wins

$$y = \underset{y}{\operatorname{arg\,max}} \ w_y \cdot f(x)$$





Binary = multiclass where the negative class has weight zero

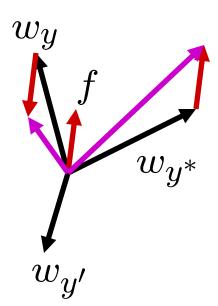
Learning: Multiclass Perceptron

- Start with all weights = 0
- Pick up training examples one by one
- Predict with current weights

$$y = \arg \max_{y} w_{y} \cdot f(x)$$

- If correct, no change!
- If wrong: lower score of wrong answer, raise score of right answer

$$w_y = w_y - f(x)$$
$$w_{y^*} = w_{y^*} + f(x)$$

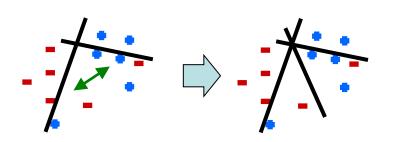


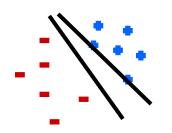
Problems with the Perceptron

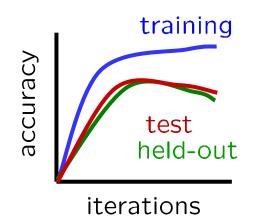
- Noise: if the data isn't separable, weights might thrash
 - Averaging weight vectors over time can help (averaged perceptron)

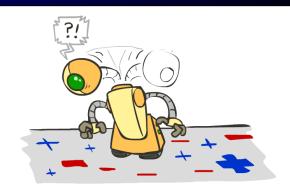
 Mediocre generalization: finds a "barely" separating solution

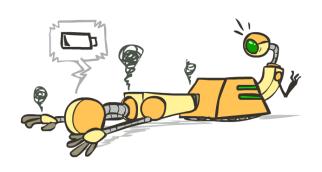
- Overtraining: test / held-out accuracy usually rises, then falls
 - Overtraining is a kind of overfitting



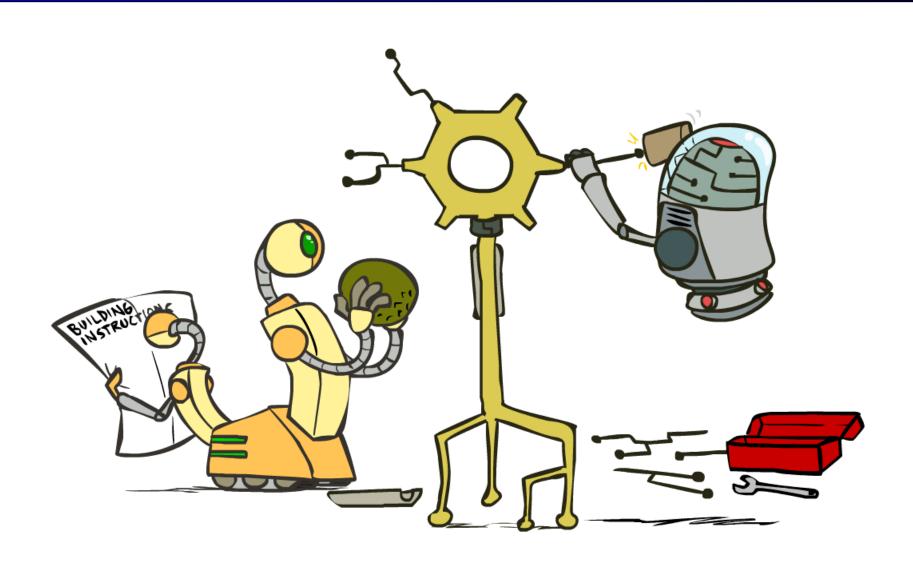




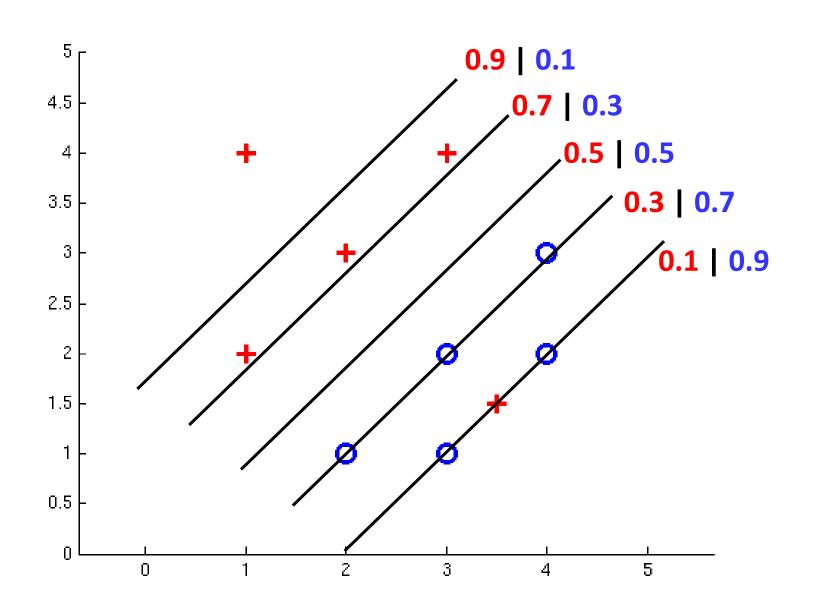




Improving the Perceptron



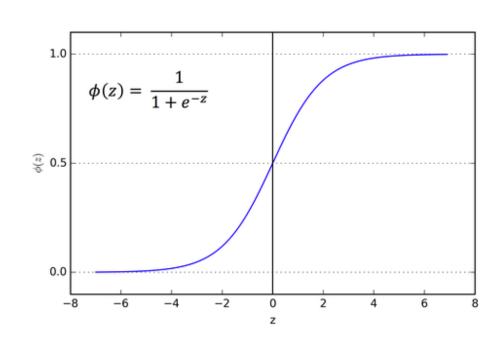
Non-Separable Case: Probabilistic Decision



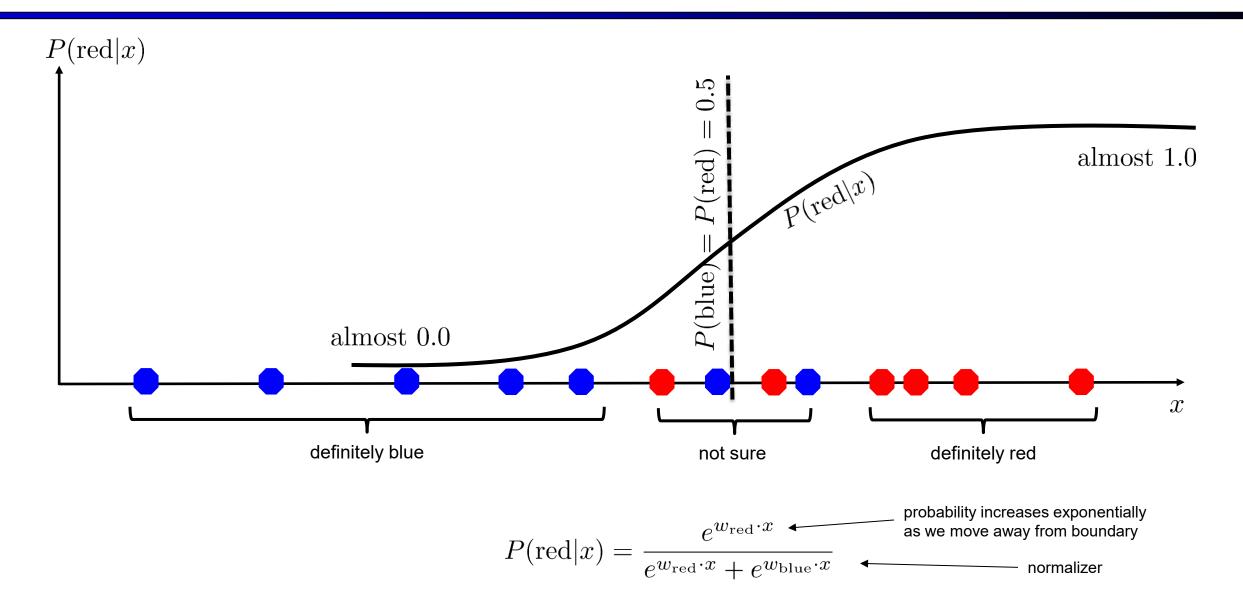
How to get probabilistic decisions?

- Perceptron scoring: $z = w \cdot f(x)$
- If $z = w \cdot f(x)$ very positive \rightarrow want probability going to 1
- If $z = w \cdot f(x)$ very negative \rightarrow want probability going to 0
- Sigmoid function

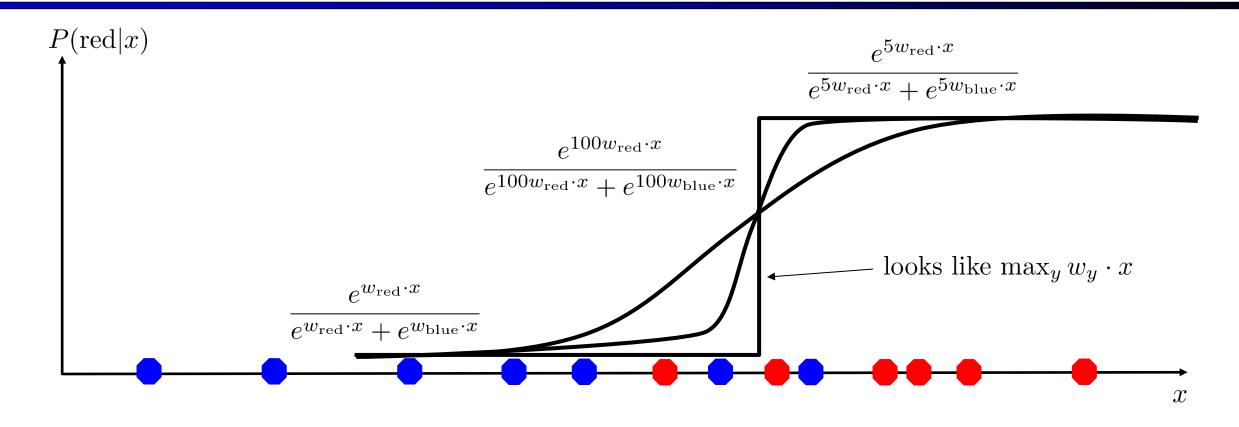
$$\phi(z) = \frac{1}{1 + e^{-z}}$$



A 1D Example



The Soft Max

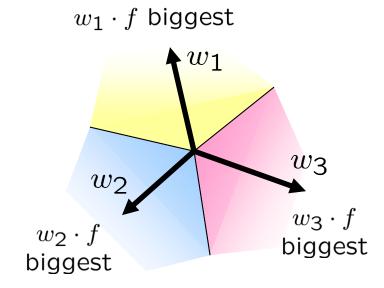


$$P(\text{red}|x) = \frac{e^{w_{\text{red}} \cdot x}}{e^{w_{\text{red}} \cdot x} + e^{w_{\text{blue}} \cdot x}}$$

Multiclass Logistic Regression

Recall Perceptron:

- A weight vector for each class: w_y
- Score (activation) of a class y: $w_y \cdot f(x)$
- Prediction highest score wins $y = rgmax_y \max_y w_y \cdot f(x)$



How to make the scores into probabilities?

$$z_1, z_2, z_3 \rightarrow \underbrace{\frac{e^{z_1}}{e^{z_1} + e^{z_2} + e^{z_3}}, \frac{e^{z_2}}{e^{z_1} + e^{z_2} + e^{z_3}}, \frac{e^{z_3}}{e^{z_1} + e^{z_2} + e^{z_3}}}_{\text{original activations}}, \underbrace{\frac{e^{z_3}}{e^{z_1} + e^{z_2} + e^{z_3}}}_{\text{softmax activations}}$$

Best w?

Maximum likelihood estimation:

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)};w)$$

with:
$$P(y^{(i)}|x^{(i)};w) = \frac{e^{w_{y^{(i)}} \cdot f(x^{(i)})}}{\sum_{y} e^{w_{y} \cdot f(x^{(i)})}}$$

= Multi-Class Logistic Regression

How do we learn in this setting?

Optimization

• i.e., how do we solve:

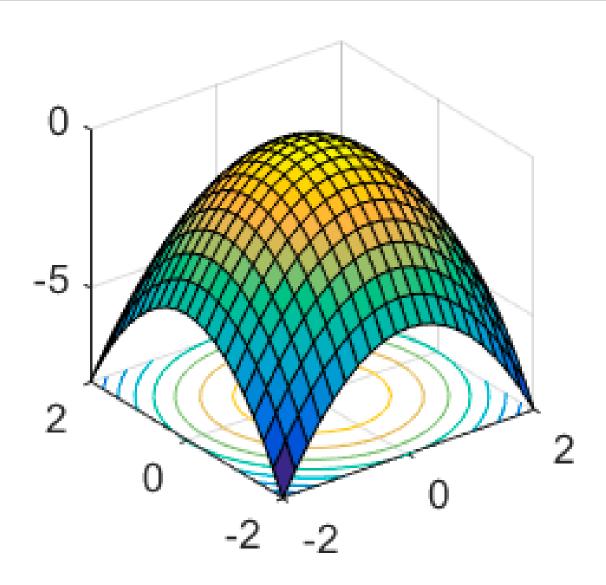
$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)};w)$$

Hill Climbing

- Simple, general idea
 - Start wherever
 - Repeat: move to the best neighboring state
 - If no neighbors better than current, quit

- What's particularly tricky when hill-climbing for multiclass logistic regression?
 - Optimization over a continuous space
 - Infinitely many neighbors!
 - How to do this efficiently?

Optimization



Gradient Ascent

- Perform update in uphill direction for each coordinate
- The steeper the slope (i.e. the higher the derivative) the bigger the step for that coordinate
- E.g., consider: $g(w_1,w_2)$
 - Updates:

$$w_1 \leftarrow w_1 + \alpha * \frac{\partial g}{\partial w_1}(w_1, w_2)$$

$$w_2 \leftarrow w_2 + \alpha * \frac{\partial g}{\partial w_2}(w_1, w_2)$$

Updates in vector notation:

$$w \leftarrow w + \alpha * \nabla_w g(w)$$

with:
$$\nabla_w g(w) = \begin{bmatrix} \frac{\partial g}{\partial w_1}(w) \\ \frac{\partial g}{\partial w_2}(w) \end{bmatrix}$$
 = gradient

Gradient Ascent

- Idea:
 - Start somewhere
 - Repeat: Take a step in the gradient direction

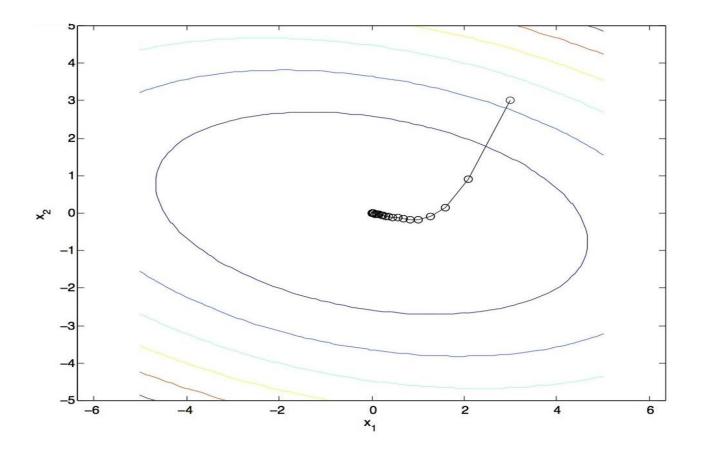


Figure source: Mathworks

Gradient in n dimensions

$$abla g = egin{bmatrix} rac{\partial g}{\partial w_1} \ rac{\partial g}{\partial w_2} \ rac{\partial g}{\partial w_n} \end{bmatrix}$$

Optimization Procedure: Gradient Ascent

```
Init w
for iter = 1, 2, ...
w \leftarrow w + \alpha * \nabla g(w)
```

- α : learning rate --- tweaking parameter that needs to be chosen carefully
- How? Try multiple choices

Batch Gradient Ascent on the Log Likelihood Objective

$$\max_{w} ll(w) = \max_{w} \sum_{i} \log P(y^{(i)}|x^{(i)}; w)$$

$$g(w)$$

• init
$$w$$

• for iter = 1, 2, ...
$$w \leftarrow w + \alpha * \sum_{i} \nabla \log P(y^{(i)}|x^{(i)};w)$$

Stochastic Gradient Ascent on the Log Likelihood Objective

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)}; w)$$

Observation: once gradient on one training example has been computed, might as well incorporate before computing next one

- init *W*
- for iter = 1, 2, ...
 - pick random j

$$w \leftarrow w + \alpha * \nabla \log P(y^{(j)} | x^{(j)}; w)$$

Mini-Batch Gradient Ascent on the Log Likelihood Objective

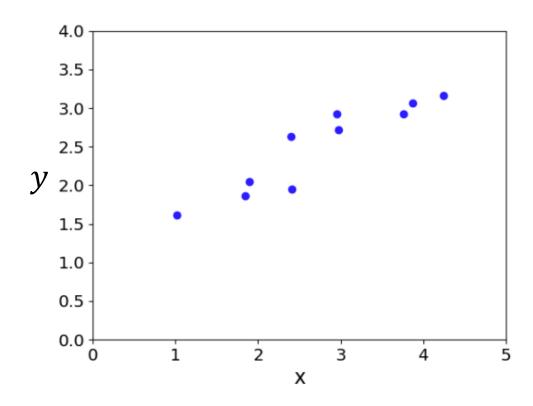
$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)}; w)$$

Observation: gradient over small set of training examples (=mini-batch) can be computed in parallel, might as well do that instead of a single one

- init w
- for iter = 1, 2, ...
 - pick random subset of training examples J

$$w \leftarrow w + \alpha * \sum_{j \in J} \nabla \log P(y^{(j)} | x^{(j)}; w)$$

Regression

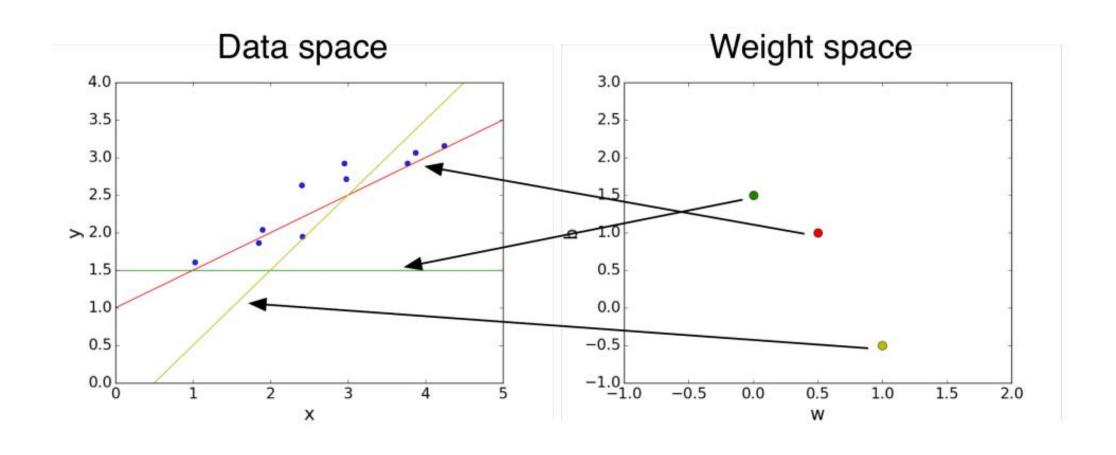


Linear Regression

- Learn to map from inputs x to outputs $y \in \mathbb{R}$
- $\hat{y} = w^T f(x) = w \circ f(x) = \sum_{i=1}^d w_i \cdot x_i$
 - Where f(x) maps from the raw input x into a set of features
- How can we measure how good a set of weights w are?
 - Loss Function
 - Squared Error

$$\mathcal{L}(w) = \frac{1}{2}(y - \hat{y})^2 = \frac{1}{2}(y - w^T f(x))^2$$

Linear Regression



We want to find w that minimizes this loss function

$$\mathcal{L}(w) = \frac{1}{2}(y - \hat{y})^2 = \frac{1}{2}(y - w^T f(x))^2$$

Calculus to the rescue!

$$\frac{\partial \mathcal{L}}{\partial w_i} = -(y - w^T f(x)) f_i(x) = (w^T f(x) - y) f_i(x)$$

Linear Regression

- How can we measure how good a set of weights w are?
 - Mean Squared Error

$$\mathcal{L}_{MSE}(w) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2} (y_i - \hat{y}_i)^2 = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{2} (y_i - w^T f(x))^2$$

$$\frac{\partial \mathcal{L}_{MSE}}{\partial w_i} = \frac{1}{N} \sum_{i=1}^{N} (w^T f(x) - y) f_i(x)$$

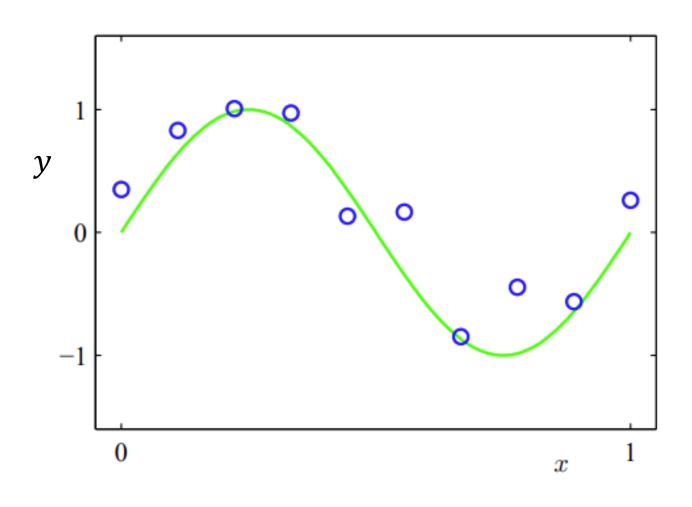
How to optimize?

Gradient Descent

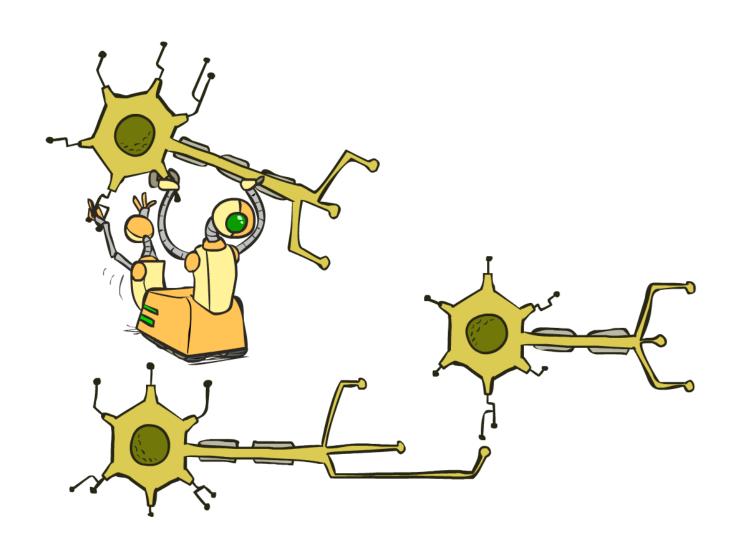
```
Init w
for iter = 1, 2, ...
w \leftarrow w - \alpha \cdot \nabla \mathcal{L}(w)
```

 Usually we will use stochastic gradient descent using minibatches, just like we talked about for classification.

Non-Linear Regression?

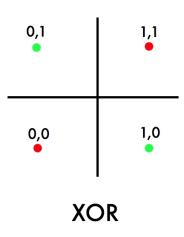


Neural Networks



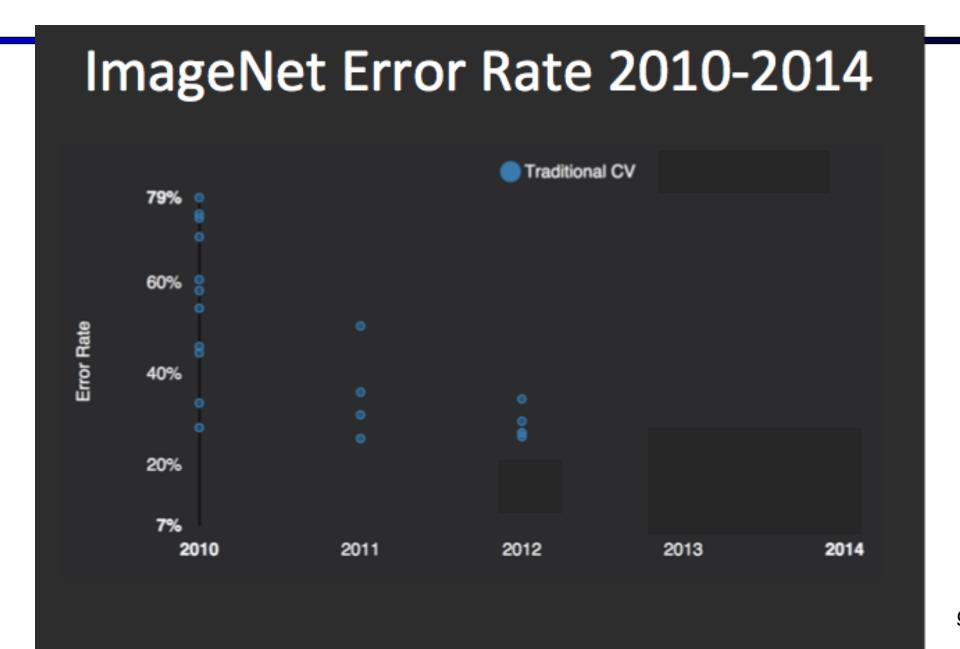
History Lesson

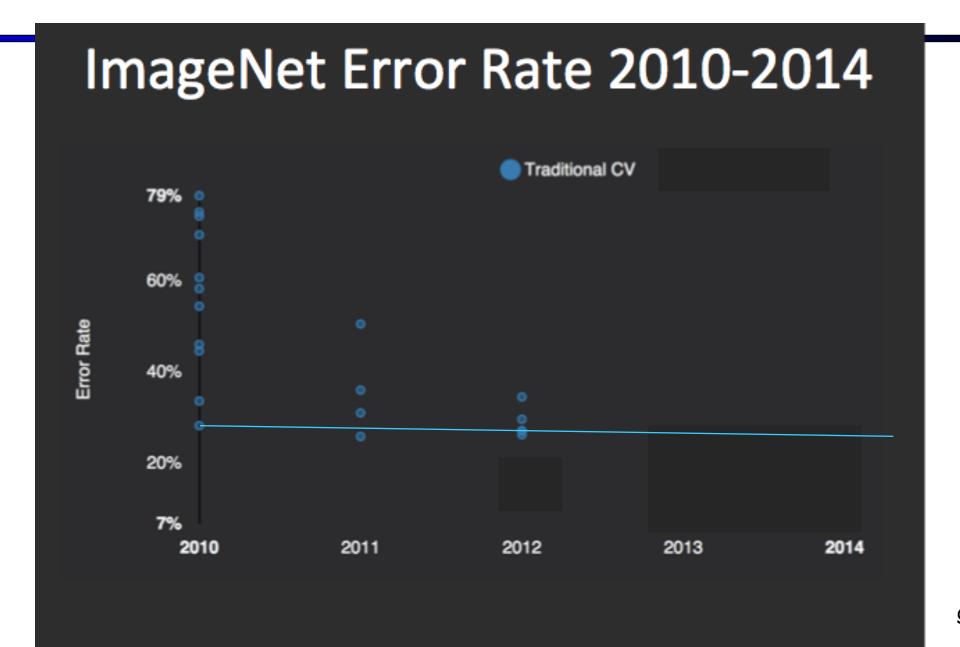
- 1943: Artificial Neuron
 - McCulloch and Pitts showed simple threshold logic
- 1957: Perceptron
 - Rosenblatt introduced algorithm for single-layer neural network
 - Explored "Multi-Layer Perceptrons" but lacked good learning algorithms
- 1969: Al Winter
 - Minsky and Papert publish book called "Perceptrons"

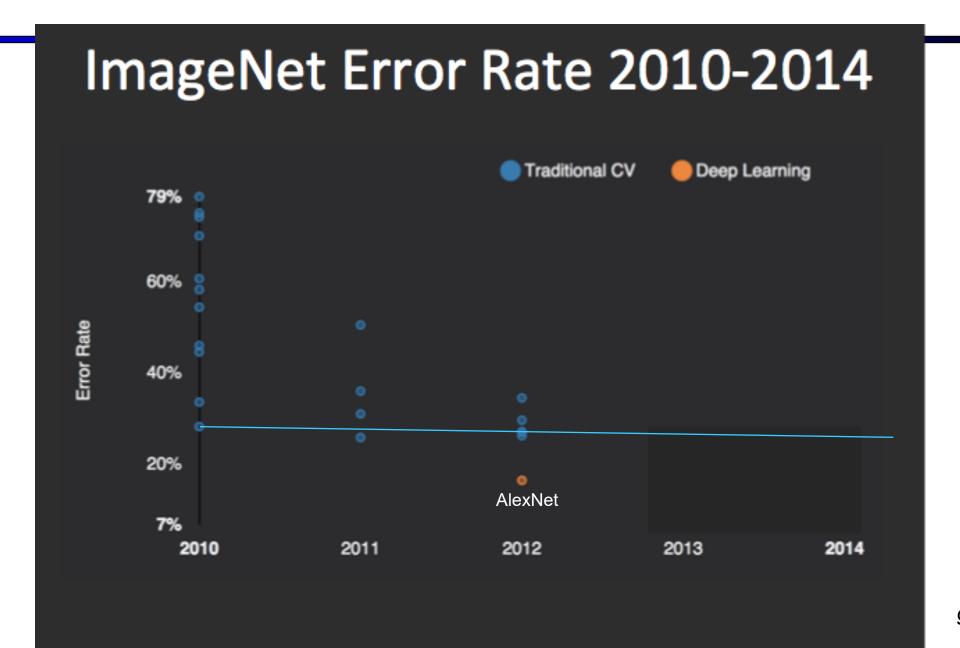


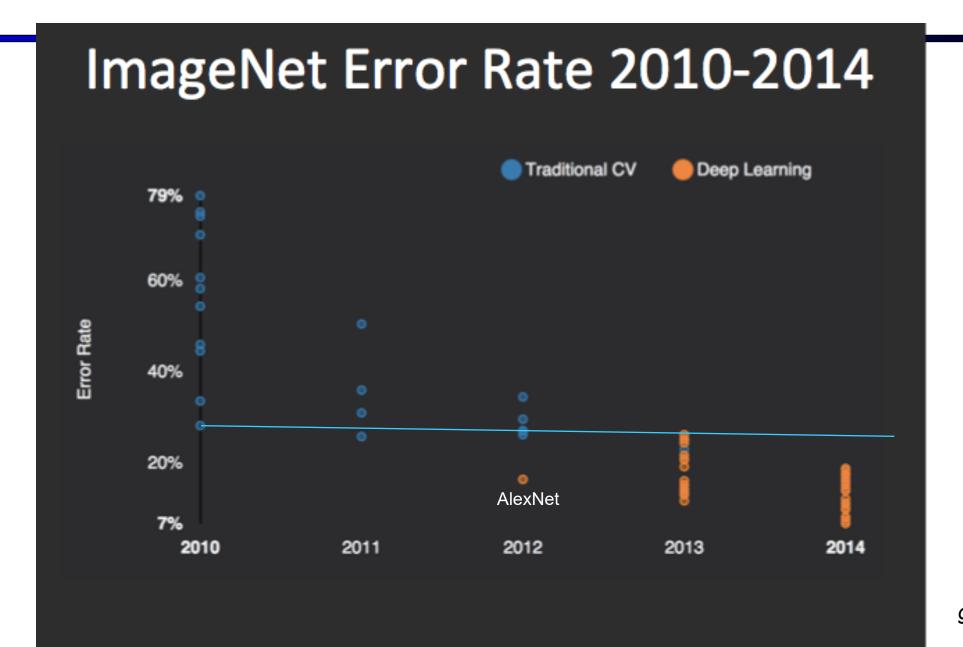
History Lesson

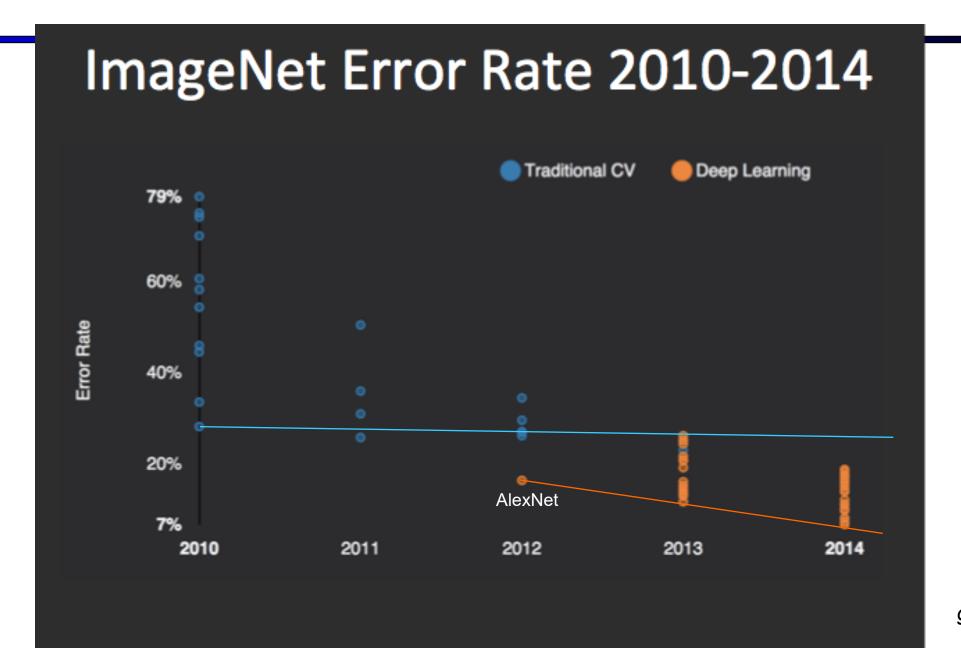
- 1986: Backpropagation
 - Rumelhart, Hinton, and Williams show power of multi-layer perceptrons trained via backpropagation
- Early 2010s: Hardware and algorithms converge with big data
- 2012: AlexNet and the image recognition breakthrough
- 2012—present: The deep learning era





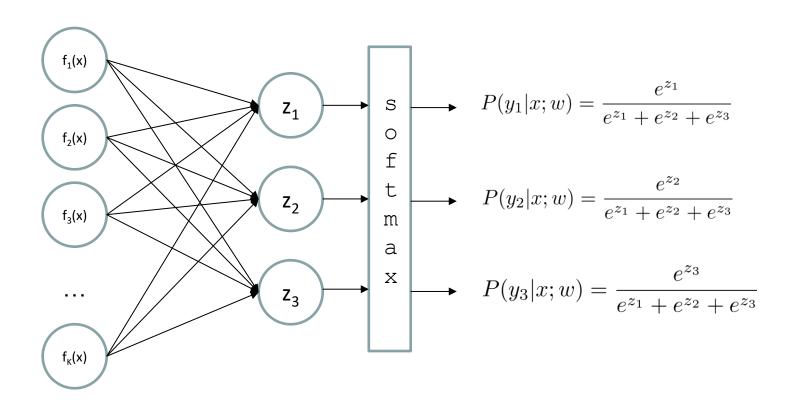




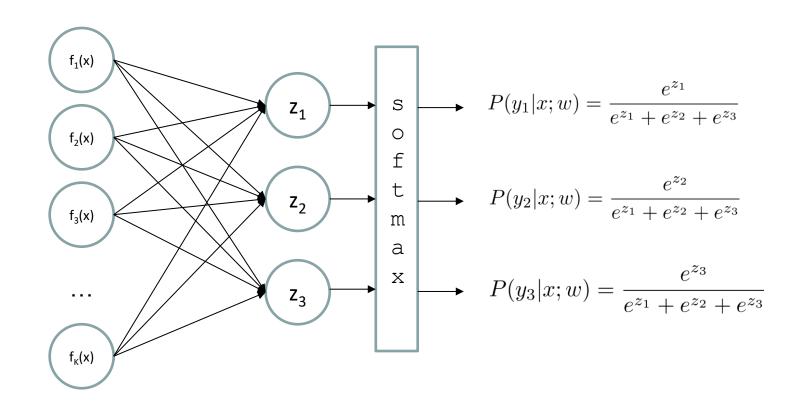


Multi-class Logistic Regression

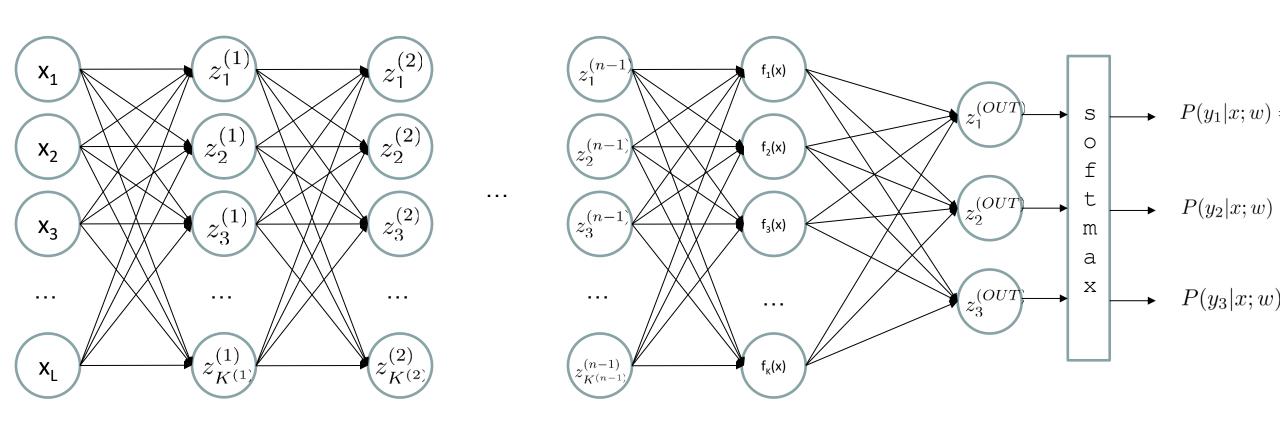
= special case of neural network



Deep Neural Network = Also learn the features!



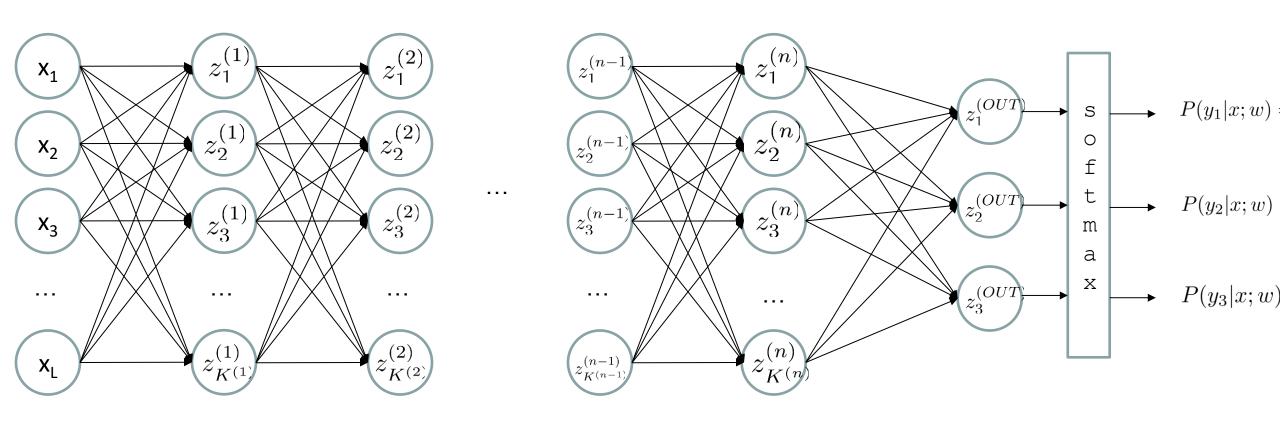
Deep Neural Network = Also learn the features!



$$z_i^{(k)} = g(\sum_j W_{i,j}^{(k-1,k)} z_j^{(k-1)})$$

g = nonlinear activation function

Deep Neural Network = Also learn the features!

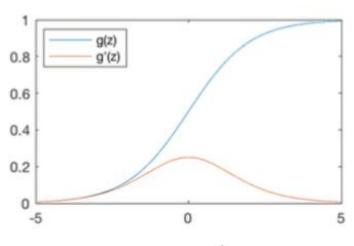


$$z_i^{(k)} = g(\sum_j W_{i,j}^{(k-1,k)} z_j^{(k-1)})$$

g = nonlinear activation function

Common Activation Functions

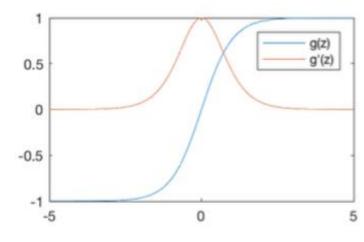
Sigmoid Function



$$g(z) = \frac{1}{1 + e^{-z}}$$

$$g'(z) = g(z)(1 - g(z))$$

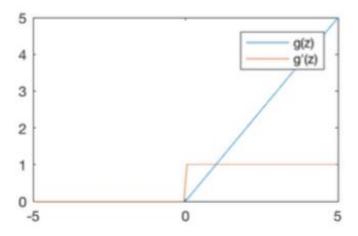
Hyperbolic Tangent



$$g(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

$$g'(z) = 1 - g(z)^2$$

Rectified Linear Unit (ReLU)



$$g(z) = \max(0, z)$$

$$g'(z) = \begin{cases} 1, & z > 0 \\ 0, & \text{otherwise} \end{cases}$$

Deep Neural Network: Also Learn the Features!

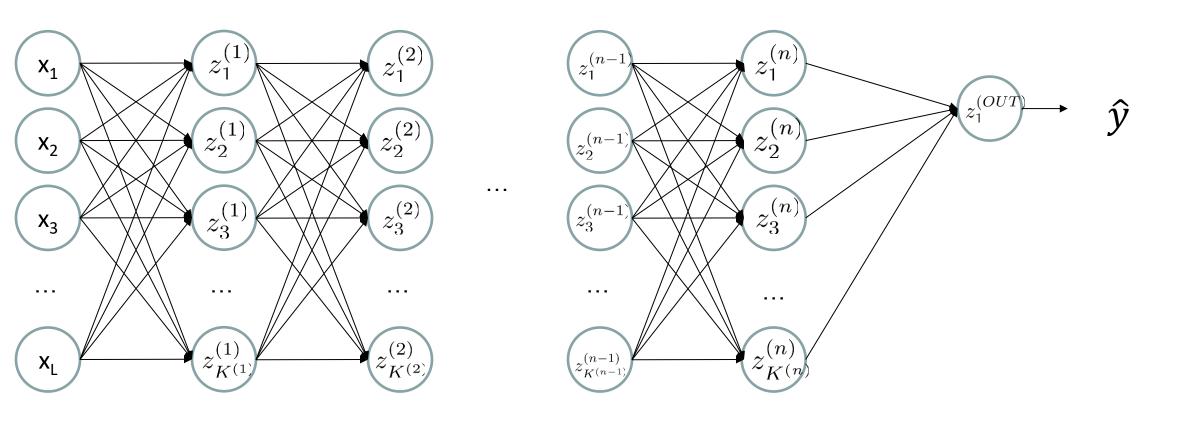
Training the deep neural network is just like logistic regression:

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)}; w)$$

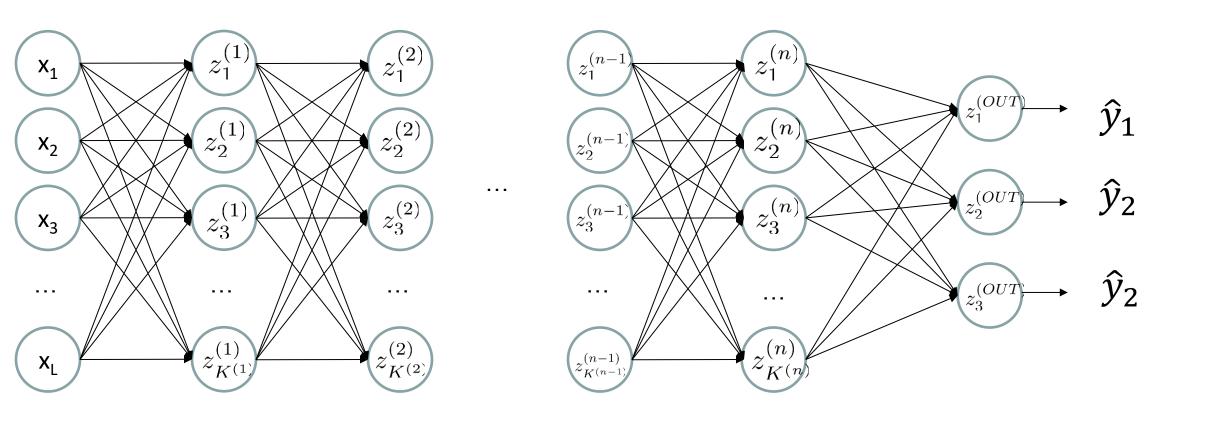
just w tends to be a much, much larger vector \odot

- just run gradient ascent
- + stop when log likelihood of hold-out data starts to decrease

Deep Neural Networks for Regression



Deep Neural Networks for Regression



Neural Networks Properties

 Theorem (Universal Function Approximators). A two-layer neural network with a sufficient number of neurons can approximate any continuous function to any desired accuracy.

Fun Neural Net Demo Site

- Demo-site:
 - http://playground.tensorflow.org/

How about computing all the derivatives?

Derivatives tables:

$$\frac{d}{dx}(a) = 0$$

$$\frac{d}{dx}[\ln u] = \frac{d}{dx}[\log_e u] = \frac{1}{u}\frac{du}{dx}$$

$$\frac{d}{dx}(au) = a\frac{du}{dx}$$

$$\frac{d}{dx}(au) = a\frac{du}{dx}$$

$$\frac{d}{dx}(u+v-w) = \frac{du}{dx} + \frac{dv}{dx} - \frac{dw}{dx}$$

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$\frac{d}{dx}(u^v) = vu^{v-1}\frac{du}{dx} + \ln u \quad u^v\frac{dv}{dx}$$

$$\frac{d}{dx}(u^v) = nu^{n-1}\frac{du}{dx}$$

$$\frac{d}{dx}(\sqrt{u}) = \frac{1}{2\sqrt{u}}\frac{du}{dx}$$

$$\frac{d}{dx}(\sqrt{u}) = \frac{1}{2\sqrt{u}}\frac{du}{dx}$$

$$\frac{d}{dx}(\sqrt{u}) = \frac{1}{2\sqrt{u}}\frac{du}{dx}$$

$$\frac{d}{dx}(\sqrt{u}) = -\frac{1}{u^2}\frac{du}{dx}$$

$$\frac{d}{dx}\cos u = -\sin u\frac{du}{dx}$$

$$\frac{d}{dx}\cot u = -\csc^2 u\frac{du}{dx}$$

$$\frac{d}{dx}\sec u = \sec u \tan u\frac{du}{dx}$$

$$\frac{d}{dx}\csc u = -\csc u \cot u\frac{du}{dx}$$

$$\frac{d}{dx}\csc u = -\csc u \cot u\frac{du}{dx}$$

How about computing all the derivatives?

- But neural net f is never one of those?
 - No problem: CHAIN RULE:

If
$$f(x) = g(h(x))$$

Then
$$f'(x) = g'(h(x))h'(x)$$

Derivatives can be computed by following well-defined procedures

Automatic Differentiation

- Automatic differentiation software
 - e.g. PyTorch, TensorFlow, Jax
 - Only need to program the function g(x,y,w)
 - Can automatically compute all derivatives w.r.t. all entries in w
 - This is typically done by caching info during forward computation pass of f, and then doing a backward pass = "backpropagation"
 - Autodiff / Backpropagation can often be done at computational cost comparable to the forward pass
- Need to know this exists
- How this is done? -- outside of scope of our class