
Announcements

▪ Gradescope
▪ You must assign questions to page numbers when you submit so the

TAs can easily find your answers.

▪ You will get a 0 otherwise!

▪ HW4 due today!

▪ P2 due on Thursday!

▪ Midterm next week!

CS 188: Artificial Intelligence

Optimization and Neural Nets

Instructor: Anca Dragan --- University of California, Berkeley
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Reminder: Linear Classifiers

▪ Inputs are feature values

▪ Each feature has a weight

▪ Sum is the activation

▪ If the activation is:
▪ Positive, output +1

▪ Negative, output -1 Σ
f1

f2

f3

w1

w2

w3

>0?

Feature Vectors

Hello,

Do you want free printr

cartriges? Why pay more

when you can get them

ABSOLUTELY FREE! Just

free : 2

YOUR_NAME : 0

MISSPELLED : 2

FROM_FRIEND : 0

...

SPAM

or

Not

SPAM

PIXEL-7,12 : 1

PIXEL-7,13 : 0

...

NUM_LOOPS : 1

...

“2”

Feature Vectors

Hello,

Do you want free printr

cartriges? Why pay more

when you can get them

ABSOLUTELY FREE! Just

free : 2

YOUR_NAME : 0

MISSPELLED : 2

FROM_FRIEND : 0

...

SPAM

or

Not

SPAM

PIXEL-7,12 : 1

PIXEL-7,13 : 0

...

NUM_LOOPS : 1

...

“2”

Learning: Binary Perceptron

▪ Start with weights = 0
▪ For each training instance:

▪ Classify with current weights

▪ If correct (i.e., y=y*), no change!
▪ If wrong: adjust the weight vector

by adding or subtracting the feature
vector. Subtract if y* is -1.

Before update 𝑤𝑇𝑓 𝑥 > 0 and 𝑦∗ = −1

After update

𝑤 − 𝑓 𝑥
𝑇
𝑓 𝑥 = 𝑤𝑇𝑓 𝑥 − 𝑓 𝑥 𝑇𝑓 𝑥 < 𝑤𝑇𝑓 𝑥

Multiclass Decision Rule

▪ If we have multiple classes:
▪ A weight vector for each class:

▪ Score (activation) of a class y:

▪ Prediction highest score wins

Binary = multiclass where the negative class has weight zero

Learning: Multiclass Perceptron

▪ Start with all weights = 0
▪ Pick up training examples one by one
▪ Predict with current weights

▪ If correct, no change!
▪ If wrong: lower score of wrong answer,

raise score of right answer

Problems with the Perceptron

▪ Noise: if the data isn’t separable,
weights might thrash

▪ Averaging weight vectors over time
can help (averaged perceptron)

▪ Mediocre generalization: finds a
“barely” separating solution

▪ Overtraining: test / held-out
accuracy usually rises, then falls

▪ Overtraining is a kind of overfitting

Improving the Perceptron

Non-Separable Case: Probabilistic Decision

0.5 | 0.5

0.3 | 0.7

0.1 | 0.9

0.7 | 0.3

0.9 | 0.1

How to get probabilistic decisions?

▪ Perceptron scoring:

▪ If very positive → want probability going to 1

▪ If very negative → want probability going to 0

▪ Sigmoid function

A 1D Example

definitely blue definitely rednot sure

probability increases exponentially

as we move away from boundary

normalizer

The Soft Max

Multiclass Logistic Regression

▪ Recall Perceptron:
▪ A weight vector for each class:

▪ Score (activation) of a class y:

▪ Prediction highest score wins

▪ How to make the scores into probabilities?

original activations softmax activations

Best w?

▪ Maximum likelihood estimation:

with:

= Multi-Class Logistic Regression

How do we learn in this setting?

▪ Optimization

▪ i.e., how do we solve:

Hill Climbing

▪ Simple, general idea
▪ Start wherever

▪ Repeat: move to the best neighboring state

▪ If no neighbors better than current, quit

▪ What’s particularly tricky when hill-climbing for multiclass
logistic regression?
• Optimization over a continuous space

• Infinitely many neighbors!

• How to do this efficiently?

Optimization

Source: offconvex.org

Gradient Ascent

▪ Perform update in uphill direction for each coordinate

▪ The steeper the slope (i.e. the higher the derivative) the bigger the step
for that coordinate

▪ E.g., consider:

▪ Updates: ▪ Updates in vector notation:

with: = gradient

▪ Idea:

▪ Start somewhere

▪ Repeat: Take a step in the gradient direction

Gradient Ascent

Figure source: Mathworks

Gradient in n dimensions

Optimization Procedure: Gradient Ascent

▪ Init 𝑤

▪ for iter = 1, 2, …

▪ 𝛼: learning rate --- tweaking parameter that needs to be
chosen carefully

▪ How? Try multiple choices

Batch Gradient Ascent on the Log Likelihood Objective

▪ init 𝑤

▪ for iter = 1, 2, …

Stochastic Gradient Ascent on the Log Likelihood Objective

▪ init 𝑤
▪ for iter = 1, 2, …

▪ pick random j

Observation: once gradient on one training example has been
computed, might as well incorporate before computing next one

Mini-Batch Gradient Ascent on the Log Likelihood Objective

▪ init𝑤

▪ for iter = 1, 2, …

▪ pick random subset of training examples J

Observation: gradient over small set of training examples (=mini-batch)
can be computed in parallel, might as well do that instead of a single one

Regression

𝑦

Linear Regression

▪ Learn to map from inputs 𝑥 to outputs 𝑦 ∈ ℝ

▪ ො𝑦 = 𝑤𝑇𝑓(𝑥) = 𝑤 ∘ 𝑓(𝑥) = σ𝑖=1
𝑑 𝑤𝑖 ⋅ 𝑥𝑖

▪ Where 𝑓(𝑥) maps from the raw input x into a set of features

▪ How can we measure how good a set of weights 𝑤 are?
▪ Loss Function

▪ Squared Error

ℒ 𝑤 =
1

2
𝑦 − ො𝑦 2 =

1

2
𝑦 − 𝑤𝑇𝑓 𝑥

2

Linear Regression

▪ We want to find w that minimizes this loss function

▪ Calculus to the rescue!

ℒ 𝑤 =
1

2
𝑦 − ො𝑦 2 =

1

2
𝑦 − 𝑤𝑇𝑓 𝑥

2

𝜕ℒ

𝜕𝑤𝑖
= − 𝑦 − 𝑤𝑇𝑓 𝑥 𝑓𝑖 𝑥 = 𝑤𝑇𝑓 𝑥 − 𝑦 𝑓𝑖 𝑥

Linear Regression

▪ How can we measure how good a set of weights 𝑤 are?
▪ Mean Squared Error

ℒ𝑀𝑆𝐸 𝑤 =
1

𝑁
෍

𝑖=1

𝑁
1

2
𝑦𝑖 − ො𝑦𝑖

2 =
1

𝑁
෍

𝑖=1

𝑁
1

2
𝑦𝑖 −𝑤𝑇𝑓 𝑥

2

𝜕ℒ𝑀𝑆𝐸
𝜕𝑤𝑖

=
1

𝑁
෍

𝑖=1

𝑁

𝑤𝑇𝑓 𝑥 − 𝑦 𝑓𝑖 𝑥

How to optimize?

▪ Gradient Descent

▪ Usually we will use stochastic gradient descent using mini-
batches, just like we talked about for classification.

▪ Init 𝑤

▪ for iter = 1, 2, …

𝑤 ← 𝑤 − 𝛼 ⋅ ∇ℒ(𝑤)

Non-Linear Regression?

𝑦

Neural Networks

History Lesson

▪ 1943: Artificial Neuron
▪ McCulloch and Pitts showed simple threshold logic

▪ 1957: Perceptron
▪ Rosenblatt introduced algorithm for single-layer neural network

▪ Explored “Multi-Layer Perceptrons” but lacked good learning
algorithms

▪ 1969: AI Winter
▪ Minsky and Papert publish book called “Perceptrons”

History Lesson

▪ 1986: Backpropagation
▪ Rumelhart, Hinton, and Williams show power of multi-layer

perceptrons trained via backpropagation

▪ Early 2010s: Hardware and algorithms converge with big data

▪ 2012: AlexNet and the image recognition breakthrough

▪ 2012–present: The deep learning era

Performance

graph credit Matt

Zeiler, Clarifai

Performance

graph credit Matt

Zeiler, Clarifai

Performance

graph credit Matt

Zeiler, Clarifai

AlexNet

Performance

graph credit Matt

Zeiler, Clarifai

AlexNet

Performance

graph credit Matt

Zeiler, Clarifai

AlexNet

Multi-class Logistic Regression

▪ = special case of neural network

z1

z2

z3

f1(x)

f2(x)

f3(x)

fK(x)

s

o

f

t

m

a

x
…

Deep Neural Network = Also learn the features!

z1

z2

z3

f1(x)

f2(x)

f3(x)

fK(x)

s

o

f

t

m

a

x
…

Deep Neural Network = Also learn the features!

f1(x)

f2(x)

f3(x)

fK(x)

s

o

f

t

m

a

x
…

x1

x2

x3

xL

… … … …

…

g = nonlinear activation function

Deep Neural Network = Also learn the features!

s

o

f

t

m

a

x
…

x1

x2

x3

xL

… … … …

…

g = nonlinear activation function

Common Activation Functions

[source: MIT 6.S191 introtodeeplearning.com]

Deep Neural Network: Also Learn the Features!

▪ Training the deep neural network is just like logistic regression:

just w tends to be a much, much larger vector

▪ just run gradient ascent

+ stop when log likelihood of hold-out data starts to decrease

Deep Neural Networks for Regression

…

x1

x2

x3

xL

… … … …

…

ො𝑦

Deep Neural Networks for Regression

…

x1

x2

x3

xL

… … … …

…

ො𝑦1

ො𝑦2

ො𝑦2

Neural Networks Properties

▪ Theorem (Universal Function Approximators). A two-layer neural
network with a sufficient number of neurons can approximate
any continuous function to any desired accuracy.

Fun Neural Net Demo Site

▪ Demo-site:

▪ http://playground.tensorflow.org/

http://playground.tensorflow.org/
http://playground.tensorflow.org/

▪ Derivatives tables:

How about computing all the derivatives?

[source: http://hyperphysics.phy-astr.gsu.edu/hbase/Math/derfunc.html

How about computing all the derivatives?

■ But neural net f is never one of those?

■ No problem: CHAIN RULE:

If

Then

Derivatives can be computed by following well-defined procedures

▪ Automatic differentiation software

▪ e.g. PyTorch, TensorFlow, Jax

▪ Only need to program the function g(x,y,w)

▪ Can automatically compute all derivatives w.r.t. all entries in w

▪ This is typically done by caching info during forward computation pass
of f, and then doing a backward pass = “backpropagation”

▪ Autodiff / Backpropagation can often be done at computational cost
comparable to the forward pass

▪ Need to know this exists

▪ How this is done? -- outside of scope of our class

Automatic Differentiation

	Slide 1: Announcements
	Slide 2: CS 188: Artificial Intelligence
	Slide 3: Reminder: Linear Classifiers
	Slide 4: Feature Vectors
	Slide 5: Feature Vectors
	Slide 6: Learning: Binary Perceptron
	Slide 7: Multiclass Decision Rule
	Slide 8: Learning: Multiclass Perceptron
	Slide 10: Problems with the Perceptron
	Slide 11: Improving the Perceptron
	Slide 12: Non-Separable Case: Probabilistic Decision
	Slide 13: How to get probabilistic decisions?
	Slide 14: A 1D Example
	Slide 15: The Soft Max
	Slide 19: Multiclass Logistic Regression
	Slide 20: Best w?
	Slide 21: How do we learn in this setting?
	Slide 22: Hill Climbing
	Slide 24: Optimization
	Slide 25: Gradient Ascent
	Slide 26: Gradient Ascent
	Slide 28: Gradient in n dimensions
	Slide 29: Optimization Procedure: Gradient Ascent
	Slide 30: Batch Gradient Ascent on the Log Likelihood Objective
	Slide 32: Stochastic Gradient Ascent on the Log Likelihood Objective
	Slide 33: Mini-Batch Gradient Ascent on the Log Likelihood Objective
	Slide 34: Regression
	Slide 35: Linear Regression
	Slide 36: Linear Regression
	Slide 37
	Slide 38: Linear Regression
	Slide 39: How to optimize?
	Slide 40: Non-Linear Regression?
	Slide 42: Neural Networks
	Slide 43: History Lesson
	Slide 44: History Lesson
	Slide 45: Performance
	Slide 46: Performance
	Slide 47: Performance
	Slide 48: Performance
	Slide 49: Performance
	Slide 50: Multi-class Logistic Regression
	Slide 51: Deep Neural Network = Also learn the features!
	Slide 52: Deep Neural Network = Also learn the features!
	Slide 53: Deep Neural Network = Also learn the features!
	Slide 54: Common Activation Functions
	Slide 55: Deep Neural Network: Also Learn the Features!
	Slide 56: Deep Neural Networks for Regression
	Slide 57: Deep Neural Networks for Regression
	Slide 58: Neural Networks Properties
	Slide 61: Fun Neural Net Demo Site
	Slide 62: How about computing all the derivatives?
	Slide 63: How about computing all the derivatives?
	Slide 64: Automatic Differentiation

