Announcements

. Gradescope

- You must assign questions to page numbers when you submit so the
TAs can easily find your answers.

- You will get a O otherwise!
HW4 due today!

P2 due on Thursday!
Midterm next week!

CS 188: Artificial Intelligence

Optimization and Neural Nets

Instructor: Anca Dragan --- University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Reminder: Linear Classifiers

Inputs are feature values

Each feature has a weight
Sum is the activation

activationy(z) =Y w; - fi(z) = w- f(x)

If the activation is: o
- 1
. +
;osm\{e, output 11 ‘ xz X z 507
egative, output - jf3 i

Feature Vectors

e N
Hello, # free 2
YOUR NAME 0 S PAM
Do you want free printr MISSPELLED : 2
cartriges? Why pay more FROM FRIEND 0 C)r
when you can get them L
ABSOLUTELY FREE! Just ¢ D NOt
e N
PIXEL-7,12 : 1
PIXEL-7,13 : 0 “”
NUM LOOPS : 1
L)

Feature Vectors

e N
Hello, # free 2
YOUR NAME 0 S PAM
Do you want free printr MISSPELLED : 2
cartriges? Why pay more FROM FRIEND 0 C)r
when you can get them L
ABSOLUTELY FREE! Just ¢ D NOt
e N
PIXEL-7,12 : 1
PIXEL-7,13 : 0 “”
NUM LOOPS : 1
L)

Learning: Binary Perceptron

Start with weights =0
For each training instance:
Classify with current weights

)+ i we f(x) >0
TTY=1 it w f2) <0

If correct (i.e., y=y*), no change!

If wrong: adjust the weight vector
by adding or subtracting the feature
vector. Subtract if y* is -1.

w=w+y"-f

y*f

Before update w7 f(x) > 0 and y* = —1

After update
(w—F() FG) = wT @) — FOOTf(x) < wTf(x)

Multiclass Decision Rule

If we have multiple classes:

A weight vector for each class:
Wy
Score (activation) of a class y:

Prediction highest score wins

y = arg max wy - f(x)
Y

/’:’:—/
: o °JS
+ + - o+ 4 o O o O
O
$ +++++ + o O
wiq - f biggest
w1
w
wo 3
w3 - f
b%zgejgt biggest

Binary = multiclass where the negative class has weight zero

Learning: Multiclass Perceptron

Start with all weights =0
Pick up training examples one by one
Predict with current weights

y = argmax, wy - f(x)

If correct, no change!

If wrong: lower score of wrong answer,
raise score of right answer

wyzwy—f(a:‘)

Problems with the Perceptron

Noise: if the data isn’t separable,
weights might thrash

Averaging weight vectors over time
can help (averaged perceptron)

Mediocre generalization: finds a
“barely” separating solution

o training
Overtraining: test / held-out >
accuracy usually rises, then falls @
Overtraining is a kind of overfitting o test
©)
© held-out

iterations

Improving the Perceptron

Non-Separable Case: Probabilistic Decision

T 0.9]0.1
4.5 0.7]0.3
41 0.5] 0.5
3.5 0.3]0.7
!
25
5 L
15}

How to get probabilistic decisions?

Derceptron scoring: 2 = w - f(x)
f z=w-f(zx) verypositive 2 want probability going to 1
f 2=w-f(x) verynegative 2> want probability goingto 0O

. Sigmoid function
P(z) = 1T oz

e

P(2) = T f—7]]

A 1D Example

P(red|x)
| 2
S |
[
=1 almost 1.0
El
A
]
almost 0.0
— |
@ - @ o —0 00 0606 00606 O
\ J \ J \ J &L
| | |
definitely blue not sure definitely red

probability increases exponentially
eWred T < aswemove away from boundary

P(red|z) =

eWred T + eWblue T h normalizer

The Soft Max

SWred T

]f(red|a:) .

eOWred T + edWhlue T

6100wred s

610O'wred-az + elOOwblue-m

« —— looks like max, wy, -

ewred "L

ewred ‘T —|_ ewblue L

-@ O o —0 0 0 0606 00 ¢ C

ewred * &L

ewred L —l_ ewblue L

P(red|z) =

Multiclass Logistic Regression

w1 - f biggest

Recall Perceptron: w1

A weight vector for each class: wy

Score (activation) of aclassy: Wy - f(a:) w3

w2
Prediction highest score wins ¢y = dIrg max wy - f(x) wo - f w3 - f
(J 2 biggest
biggest
How to make the scores into probabilities?
Z Z Z
e~! e~ e~s

Z1,22,23 —7 y y
e°l + e*2 + e*3 e*l 4 e*2 - e*3 e*l 4 e*2 4 e*3

| l L J
| Y

original activations softmax activations

Best w?

. Maximum likelihood estimation:

max [l(w) = max ZlogP(y(i)\x(i);w)

w

oWy () (™)

with: P((2) [.(2). _
y s w) = T
) y Wy f(z())

= Multi-Class Logistic Regression

How do we learn in this setting?
= Optimization
= j.e., how do we solve:

w

max [l[(w) = max ZlogP(y(i)\x(i);w)

Hill Climbing

= Simple, general idea
= Start wherever
= Repeat: move to the best neighboring state
= If no neighbors better than current, quit

= What's particularly tricky when hill-climbing for multiclass
logistic regression?
* Optimization over a continuous space
* Infinitely many neighbors!
* How to do this efficiently?

Optimization

Source: offconvex.org

Gradient Ascent

= Perform update in uphill direction for each coordinate
= The steeper the slope (i.e. the higher the derivative) the bigger the step

for that coordinate

= E.g., consider: g(wy,ws)

Updates: = Updates in vector notation:

dg
wl%w1+&*a—m(wlaw2) w4 w4 ax Vy,g(w)

Jg
W2 < W2 + O * a—m(’wlg “wz) with: Vv, g(w) = [3551 (w)] = gradient

Gradient Ascent

= |dea:
= Start somewhere
= Repeat: Take a step in the gradient direction

Figure source: Mathworks

Gradient in n dimensions

Optimization Procedure: Gradient Ascent

= Tnit w

» for 1ter = 1, 2, ..

w <+ w+ a*x Vg(w)

= : learning rate --- tweaking parameter that needs to be
chosen carefully

= How? Try multiple choices

Batch Gradient Ascent on the Log Likelihood Objective

max ([l[(w) = max ZlogP(y(i)\az(i);w]

w

\ J

g(w)

= 1nit w

» for 1ter = 1, 2, ..

W — W+ « % Z V log P(y'9 |z w)

Stochastic Gradient Ascent on the Log Likelihood Objective

w

max ([l[(w) = max ZlogP(y(i)\az(i);w]

Observation: once gradient on one training example has been
computed, might as well incorporate before computing next one

= 1nit W
» for 1ter = 1, 2,

= pick random]

w — w+ a* Viog Py |29)

Mini-Batch Gradient Ascent on the Log Likelihood Objective

w

max [l(w) = max ZlogP(y(i)\az(i);w]

Observation: gradient over small set of training examples (=mini-batch)
can be computed in parallel, might as well do that instead of a single one

= 1nitw
» for 1ter =1, 2,
* pick random subset of training examples J

W W+ o % ZVlogP(y(j)\x(j);w]
j€J

4.0

3.5 -
3.0
2.5
Y 20-
1.5
1.0

0.5 1

0.0

Regression

Linear Regression

. Learn to map from inputs x to outputs y € R

- Yy=wifx) =we f(x) = Limq Wi - X;
. Where f(x) maps from the raw input x into a set of features

. How can we measure how good a set of weights w are?

- Loss Function
- Squared Error

1 1
Lw) =5 =92 = (y —w'f(0)

Linear Regression

Data space Weight space
4.0 3.0
3.5 2.5/
3.0 ,"\ 2.0
2.5 B o 0 o
> 2.0 R ¢ /ﬁ>§ 8
15— — B 0.5
Lo - 0.0
0.5 -0.5 — o
o 2 3 4 5 %% <05 oo o5 10 15
X W

2.0

. We want to find w that minimizes this loss function

1 1
Lw) =z =92 =5 -w'f®)’

. Calculus to the rescue!

0L
d Wi

= —(y = wTf(x)fi(x) = WTf(x) — y)f;(x)

Linear Regression

. How can we measure how good a set of weights w are?

- Mean Squared Error

N N
1 1 1 1
Lyse(w) = NZ:E(JG’ — }A’i)z = sz (Yi — WTf(X))Z
i=1 =1

aLM.S'E

z(wa(x) Vi)

How to optimize?

. Gradient Descent

= Tnit w

» for 1ter = 1, 2, ..

wew—a-VL(w)

. Usually we will use stochastic gradient descent using mini-
batches, just like we talked about for classification.

Non-Linear Regression?

Neural Networks

History Lesson

1943: Artificial Neuron
McCulloch and Pitts showed simple threshold logic

1957: Perceptron
Rosenblatt introduced algorithm for single-layer neural network

Explored “Multi-Layer Perceptrons” but lacked good learning
algorithms

1969: Al Winter 0, y
Minsky and Papert publish book called “Perceptrons”

0,0 1,0

XOR

History Lesson

. 1986: Backpropagation

- Rumelhart, Hinton, and Williams show power of multi-layer
perceptrons trained via backpropagation

. Early 2010s: Hardware and algorithms converge with big data
. 2012: AlexNet and the image recognition breakthrough
. 2012—-present: The deep learning era

Performance

ImageNet Error Rate 2010-2014

Traditional CV
T9%
60%
=2
35|
v
< 40%
uj
20%
T9%
2010 2011 2012 2013 2014

graph credit Matt
Zeiler, Clarifai

Performance

ImageNet Error Rate 2010-2014

Traditional CV
T9%
60%
=2
35|
v
< 40%
uj
20%
T9%
2010 2011 2012 2013 2014

graph credit Matt
Zeiler, Clarifai

Performance

ImageNet Error Rate 2010-2014

Traditional CV & Deep Leamning

T9%
60
=
35|
r
< 40%
uj
20%
AlexNet
T%
2010 2011 2012 2013 2014

graph credit Matt
Zeiler, Clarifai

Performance

ImageNet Error Rate 2010-2014

Traditional CV & Deep Leamning

T9%
60%
=
35|
v
< 40%
uj
20% E
AlexNet ﬂ B
7% -
2010 2011 2012 2013 2014

graph credit Matt
Zeiler, Clarifai

Performance

ImageNet Error Rate 2010-2014

Traditional CV & Deep Leamning

T9%
60%
=
35|
v
< 40%
uj
20% E
AlexNet ﬂ B
7% -
2010 2011 2012 2013 2014

graph credit Matt
Zeiler, Clarifai

Multi-class Logistic Regression

= =special case of neural network

f1(x)
e*1
Zl —» S 5 P(y1|$?w) - ezl _|_622 +623
fz(x) ©
f
e*2
2 o F e Pl =
f3(x) m el + e*2 4 e*s
a
X 623

23 " — P(y3|x7w) — e?1 + e?2 | %3

f(x)

Deep Neural Network = Also learn the features!

f1(x)
P
2 ol s b Plalsw) =
f,(x) O
f
2, — P P(plrw)=——
f3(x) 2 m ! e*1 4 e*2 + e*3
a
X e~3

23 P(y3|$7w) - e*1 4 e*2 4+ %3

fi(x)

Deep Neural Network = Also learn the features!

(1) (2) (n—1)

Z1 Z‘I 21 fl(x)
LU s Ly Pyifasw)
Zgl) z£2) Zgﬂfll £,(x) o)
f
N |
(1) (2) (n—1) zéOUT)—’ — P(y2|z;w)
& 23 23 (0 0
a
X
AOVT— 7 P(ys|a;w)
(1) (2) -
27°¢¢) Z g (2 A1), fx)

Z,L(k) — g(E Wz(,l;_ 1’k) Z](-k_ 1)] g = nonlinear activation function

7

Deep Neural Network = Also learn the features!

1 2 " n
2 xe) - RO
AU s L P(yi|z;w)
1 2 \ n
4 24 s 2" °
f
ovr__,| € P(y2|z; w)
9 1" —> Yo | T3 W
Z:gl) Z;g) zén 1) Zén] 25 -
a
doy o 2L L Pl
(1) (2) e (n)
%6 PR 2 Z K ()

Z,L(k) — g(E Wz(,l;_ 1’k) Z](-k_ 1)] g = nonlinear activation function

7

Common Activation Functions

Sigmoid Function Hyperbolic Tangent Rectified Linear Unit (RelLU)
1 : v ' 1 — 5 .
08f|— gw ol | | o | |
0.6 3}
0
0.4 2|
0.2} - g 1|
o . I, . 6 .
-5 0 S -5 0 S -5 0
1 et —-e~ %
g(z)=1+e_z g(z)=ez+e_z g(z)=max (0, z)
1 z>0
!’ - i ! L 2 2 / — ’
9'(z)= g(2)(1-g(2)) 9'(z)=1-g(2) g (z) {0, P

[source: MIT 6.5191 introtodeeplearning.com]

Deep Neural Network: Also Learn the Features!

= Training the deep neural network is just like logistic regression:

w

max [l(w) = max ZlogP(y(i)\x(i);wj

just w tends to be a much, much larger vector ©

= just run gradient ascent
+ stop when log likelihood of hold-out data starts to decrease

Deep Neural Networks for Regression

(1) 2 n—1 (nj
2 21() 1(2
(] Z1(OUT |
1 2 \ n
zé) zg) {n=b Zo
1 2 n—1 (n]
z%) ng) ; <3
(1) (2) e (n)
%6 PR 2 Z K ()

<

Deep Neural Networks for Regression

1 9 -
(outT . A
<1
(1) (2 et (n) Y1
,Z2 22 ZQ ’ Z2
(OUT)p
1 2 n—1) (n) z 2
z%) ng) 2 ~3 .
N\
(1) (2) e (n)
%6 PR 2 Z K ()

Neural Networks Properties

= Theorem (Universal Function Approximators). A two-layer neural
network with a sufficient number of neurons can approximate
any continuous function to any desired accuracy.

Fun Neural Net Demo Site

= Demo-site:

http://playground.tensorflow.org/
http://playground.tensorflow.org/

How about computing all the derivatives?

= Derivatives tables:

[source: http://hyperphysics.phy-astr.gsu.edu/hbase/Math/derfunc.html

4 (ay=0

dx

d

—(x)=1

dax (x)

d du

—) =a—-

dx (aa) dx

i(u -|-1.=—1|.",|=ﬁ +£—
dax drx dx
i(:rr] = uﬁ + .._(f_u

dx dx dx

i(EJ_lE_iﬂ

adx v vee v
d et dit
— i = N e
dx) dx
i(x._-:f}= l_di
ax 2-+Ju dx

d1y 1 du
)
d {1 __n du
d_x(u”] ou™ dx

d d du
E[.ﬂﬂ)] = E['ﬂ“}]

dx

dw
dx

d i 1 du
—[Inu]=—[log, u]=—""—
dx dx i dx
dor, I du
[Iug Ju]z log e
dx ‘ o odx
d . du
e =g —
dx dx
d du
—a"=a"lna—
dx dx
d ;. _ du dv
—[H”,I =" Inw vt S
dx dx dx
d . du
—siny = cosy—
dx dx
d . du
—COSH = —SInu—
dx dx
d s du
—tanu = secTu—
dx dx
o s du
cotu =—csc u
dx ax
d i
secu = secutany——
dx ox
el Fell}
CSCU =—Cscucolu
dx dx

How about computing all the derivatives?

But neural net f is never one of those?
=« No problem: CHAIN RULE:

f f(x) = g(h(z))

Then f'(z) =g (h(x))h (z)

Derivatives can be computed by following well-defined procedures

Automatic Differentiation

= Automatic differentiation software
= e.g. PyTorch, TensorFlow, Jax

Only need to program the function g(x,y,w)
Can automatically compute all derivatives w.r.t. all entries in w

This is typically done by caching info during forward computation pass
of f, and then doing a backward pass = “backpropagation”

Autodiff / Backpropagation can often be done at computational cost
comparable to the forward pass

= Need to know this exists
= How this is done? -- outside of scope of our class

	Slide 1: Announcements
	Slide 2: CS 188: Artificial Intelligence
	Slide 3: Reminder: Linear Classifiers
	Slide 4: Feature Vectors
	Slide 5: Feature Vectors
	Slide 6: Learning: Binary Perceptron
	Slide 7: Multiclass Decision Rule
	Slide 8: Learning: Multiclass Perceptron
	Slide 10: Problems with the Perceptron
	Slide 11: Improving the Perceptron
	Slide 12: Non-Separable Case: Probabilistic Decision
	Slide 13: How to get probabilistic decisions?
	Slide 14: A 1D Example
	Slide 15: The Soft Max
	Slide 19: Multiclass Logistic Regression
	Slide 20: Best w?
	Slide 21: How do we learn in this setting?
	Slide 22: Hill Climbing
	Slide 24: Optimization
	Slide 25: Gradient Ascent
	Slide 26: Gradient Ascent
	Slide 28: Gradient in n dimensions
	Slide 29: Optimization Procedure: Gradient Ascent
	Slide 30: Batch Gradient Ascent on the Log Likelihood Objective
	Slide 32: Stochastic Gradient Ascent on the Log Likelihood Objective
	Slide 33: Mini-Batch Gradient Ascent on the Log Likelihood Objective
	Slide 34: Regression
	Slide 35: Linear Regression
	Slide 36: Linear Regression
	Slide 37
	Slide 38: Linear Regression
	Slide 39: How to optimize?
	Slide 40: Non-Linear Regression?
	Slide 42: Neural Networks
	Slide 43: History Lesson
	Slide 44: History Lesson
	Slide 45: Performance
	Slide 46: Performance
	Slide 47: Performance
	Slide 48: Performance
	Slide 49: Performance
	Slide 50: Multi-class Logistic Regression
	Slide 51: Deep Neural Network = Also learn the features!
	Slide 52: Deep Neural Network = Also learn the features!
	Slide 53: Deep Neural Network = Also learn the features!
	Slide 54: Common Activation Functions
	Slide 55: Deep Neural Network: Also Learn the Features!
	Slide 56: Deep Neural Networks for Regression
	Slide 57: Deep Neural Networks for Regression
	Slide 58: Neural Networks Properties
	Slide 61: Fun Neural Net Demo Site
	Slide 62: How about computing all the derivatives?
	Slide 63: How about computing all the derivatives?
	Slide 64: Automatic Differentiation

