Announcements

. Gradescope

- You must assign questions to page numbers when you submit so the
TAs can easily find your answers.

- You will get a O otherwise!
HW4 due today!

P2 due on Thursday!
Midterm next week!



CS 188: Artificial Intelligence

Optimization and Neural Nets

Instructor: Anca Dragan --- University of California, Berkeley

[These slides were created by Dan Klein and Pieter Abbeel for C5188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]



Reminder: Linear Classifiers

Inputs are feature values

Each feature has a weight
Sum is the activation

activationy(z) =Y w; - fi(z) = w- f(x)

If the activation is: o
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Feature Vectors
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Learning: Binary Perceptron

Start with weights =0
For each training instance:
Classify with current weights

)+ i we f(x) >0
TTY=1 it w f2) <0

If correct (i.e., y=y*), no change!

If wrong: adjust the weight vector
by adding or subtracting the feature
vector. Subtract if y* is -1.

w=w+y"-f

y*f

Before update w7 f(x) > 0 and y* = —1

After update
(w—F() FG) = wT @) — FOOTf(x) < wTf(x)



Multiclass Decision Rule

If we have multiple classes:

A weight vector for each class:
Wy
Score (activation) of a class y:

Prediction highest score wins

y = arg max wy - f(x)
Y

/’:’:—/
: o °JS
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O
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wiq - f biggest
w1
w
wo 3
w3 - f
b%zgejgt biggest

Binary = multiclass where the negative class has weight zero



Learning: Multiclass Perceptron

Start with all weights =0
Pick up training examples one by one
Predict with current weights

y = argmax, wy - f(x)

If correct, no change!

If wrong: lower score of wrong answer,
raise score of right answer

wyzwy—f(a:‘)



Problems with the Perceptron

Noise: if the data isn’t separable,
weights might thrash

Averaging weight vectors over time
can help (averaged perceptron)

Mediocre generalization: finds a
“barely” separating solution

o training
Overtraining: test / held-out >
accuracy usually rises, then falls @
Overtraining is a kind of overfitting o test
©)
© held-out

iterations



Improving the Perceptron




Non-Separable Case: Probabilistic Decision
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How to get probabilistic decisions?

Derceptron scoring: 2 = w - f(x)
f z=w-f(zx) verypositive 2 want probability going to 1
f 2=w-f(x) verynegative 2> want probability goingto 0O

. Sigmoid function
P(z) = 1T oz

e

P(2) = T f—7] ]




A 1D Example
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The Soft Max
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Multiclass Logistic Regression

w1 - f biggest

Recall Perceptron: w1

A weight vector for each class: wy

Score (activation) of aclassy: Wy - f(a:) w3

w2
Prediction highest score wins ¢y = dIrg max wy - f(x) wo - f w3 - f
(J 2 biggest
biggest
How to make the scores into probabilities?
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Best w?

. Maximum likelihood estimation:

max [l(w) = max ZlogP(y(i)\x(i);w)

w

oWy () (™)

with: P( (2) [ .(2). _
y s w) = T
) y Wy f(z())

= Multi-Class Logistic Regression



How do we learn in this setting?
= Optimization
= j.e., how do we solve:

w

max [l[(w) = max ZlogP(y(i)\x(i);w)



Hill Climbing

= Simple, general idea
= Start wherever
= Repeat: move to the best neighboring state
= If no neighbors better than current, quit

= What's particularly tricky when hill-climbing for multiclass
logistic regression?
* Optimization over a continuous space
* Infinitely many neighbors!
* How to do this efficiently?



Optimization

Source: offconvex.org



Gradient Ascent

= Perform update in uphill direction for each coordinate
= The steeper the slope (i.e. the higher the derivative) the bigger the step

for that coordinate

= E.g., consider:  g(wy,ws)

Updates: = Updates in vector notation:

dg
wl%w1+&*a—m(wlaw2) w4 w4 ax Vy,g(w)

Jg
W2 < W2 + O * a—m(’wlg “wz) with: Vv, g(w) = [3551 (w)] = gradient




Gradient Ascent

= |dea:
= Start somewhere
= Repeat: Take a step in the gradient direction

Figure source: Mathworks



Gradient in n dimensions




Optimization Procedure: Gradient Ascent

= Tnit w

» for 1ter = 1, 2, ..

w <+ w+ a*x Vg(w)

= : learning rate --- tweaking parameter that needs to be
chosen carefully

= How? Try multiple choices



Batch Gradient Ascent on the Log Likelihood Objective

max ([l[(w) = max ZlogP(y(i)\az(i);w]

w

\ J

g(w)

= 1nit w

» for 1ter = 1, 2, ..

W — W+ « % Z V log P(y'9 |z w)




Stochastic Gradient Ascent on the Log Likelihood Objective

w

max ([l[(w) = max ZlogP(y(i)\az(i);w]

Observation: once gradient on one training example has been
computed, might as well incorporate before computing next one

= 1nit W
» for 1ter = 1, 2,

= pick random ]

w — w+ a* Viog Py |29 )




Mini-Batch Gradient Ascent on the Log Likelihood Objective

w

max [l(w) = max ZlogP(y(i)\az(i);w]

Observation: gradient over small set of training examples (=mini-batch)
can be computed in parallel, might as well do that instead of a single one

= 1nitw
» for 1ter =1, 2,
* pick random subset of training examples J

W W+ o % ZVlogP(y(j)\x(j);w]
j€J




4.0

3.5 -
3.0
2.5
Y 20-
1.5
1.0

0.5 1

0.0

Regression




Linear Regression

. Learn to map from inputs x to outputs y € R

- Yy=wifx) =we f(x) = Limq Wi - X;
. Where f(x) maps from the raw input x into a set of features

. How can we measure how good a set of weights w are?

- Loss Function
- Squared Error

1 1
Lw) =5 =92 = (y —w'f(0)



Linear Regression
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. We want to find w that minimizes this loss function

1 1
Lw) =z =92 =5 -w'f®)’

. Calculus to the rescue!

0L
d Wi

= —(y = wTf(x)fi(x) = WTf(x) — y)f;(x)



Linear Regression

. How can we measure how good a set of weights w are?

- Mean Squared Error

N N
1 1 1 1
Lyse(w) = NZ:E(JG’ — }A’i)z = sz (Yi — WTf(X))Z
i=1 =1

aLM.S'E

z(wa(x) Vi)



How to optimize?

. Gradient Descent

= Tnit w

» for 1ter = 1, 2, ..

wew—a-VL(w)

. Usually we will use stochastic gradient descent using mini-
batches, just like we talked about for classification.



Non-Linear Regression?




Neural Networks




History Lesson

1943: Artificial Neuron
McCulloch and Pitts showed simple threshold logic

1957: Perceptron
Rosenblatt introduced algorithm for single-layer neural network

Explored “Multi-Layer Perceptrons” but lacked good learning
algorithms

1969: Al Winter 0, y
Minsky and Papert publish book called “Perceptrons”

0,0 1,0

XOR



History Lesson

. 1986: Backpropagation

- Rumelhart, Hinton, and Williams show power of multi-layer
perceptrons trained via backpropagation

. Early 2010s: Hardware and algorithms converge with big data
. 2012: AlexNet and the image recognition breakthrough
. 2012—-present: The deep learning era



Performance
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Multi-class Logistic Regression

= =special case of neural network

f1(x)
e*1
Zl —» S 5 P(y1|$?w) - ezl _|_622 +623
fz(x) ©
f
e*2
2 o F e Pl =
f3(x) m el + e*2 4 e*s
a
X 623

23 " — P(y3|x7w) — e?1 + e?2 | %3

f(x)



Deep Neural Network = Also learn the features!

f1(x)
P
2 ol s b Plalsw) =
f,(x) O
f
2, — P P(plrw)=——
f3(x) 2 m ! e*1 4 e*2 + e*3
a
X e~3

23 P(y3|$7w) - e*1 4 e*2 4+ %3

fi(x)



Deep Neural Network = Also learn the features!

(1) (2) (n—1)

Z1 Z‘I 21 fl(x)
LU s Ly Pyifasw)
Zgl) z£2) Zgﬂfll £,(x) o)
f
N |
(1) (2) (n—1) zéOUT)—’ —  P(y2|z;w)
& 23 23 (0 0
a
X
AOVT— 7 P(ys|a;w)
(1) (2) -
27°¢¢) Z g (2 A1), fx)

Z,L(k) — g( E Wz(,l;_ 1’k) Z](-k_ 1) ] g = nonlinear activation function

7



Deep Neural Network = Also learn the features!
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Common Activation Functions

Sigmoid Function Hyperbolic Tangent Rectified Linear Unit (RelLU)
1 : v ' 1 — 5 .
08f|— gw ol | | o | |
0.6 3}
0
0.4 2|
0.2} - g 1|
o . I, . 6 .
-5 0 S -5 0 S -5 0
1 et —-e~ %
g(z)=1+e_z g(z)=ez+e_z g(z)=max (0, z)
1 z>0
!’ - i ! L 2 2 / — ’
9'(z)= g(2)(1-g(2)) 9'(z)=1-g(2) g (z) {0, P

[source: MIT 6.5191 introtodeeplearning.com]



Deep Neural Network: Also Learn the Features!

= Training the deep neural network is just like logistic regression:

w

max [l(w) = max ZlogP(y(i)\x(i);wj

just w tends to be a much, much larger vector ©

= just run gradient ascent
+ stop when log likelihood of hold-out data starts to decrease



Deep Neural Networks for Regression
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Deep Neural Networks for Regression
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Neural Networks Properties

= Theorem (Universal Function Approximators). A two-layer neural
network with a sufficient number of neurons can approximate
any continuous function to any desired accuracy.



Fun Neural Net Demo Site

= Demo-site:


http://playground.tensorflow.org/
http://playground.tensorflow.org/

How about computing all the derivatives?

= Derivatives tables:

[source: http://hyperphysics.phy-astr.gsu.edu/hbase/Math/derfunc.html
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How about computing all the derivatives?

But neural net f is never one of those?
=« No problem: CHAIN RULE:

f f(x) = g(h(z))

Then f'(z) =g (h(x))h (z)

Derivatives can be computed by following well-defined procedures



Automatic Differentiation

= Automatic differentiation software
= e.g. PyTorch, TensorFlow, Jax

Only need to program the function g(x,y,w)
Can automatically compute all derivatives w.r.t. all entries in w

This is typically done by caching info during forward computation pass
of f, and then doing a backward pass = “backpropagation”

Autodiff / Backpropagation can often be done at computational cost
comparable to the forward pass

= Need to know this exists
= How this is done? -- outside of scope of our class
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