Announcements

- Project 0: Python Tutorial
 - Due Friday before midnight
- Homework 1
 - Due Aug 29th before midnight
 - Covers this lecture (we probably will take two days to cover it).
 - You can start today!
 - Look at the practice problems first if you're stuck!

CS 4300/6300: Search

Instructor: Daniel Brown

University of Utah

[Based on slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley http://ai.berkeley.edu.]

Today

Agents that Plan Ahead

Search Problems

Uninformed Search Methods

Informed (heuristic) Search

Agents that Plan

Reflex Agents

Reflex agents:

- Choose action based on current percept (and maybe memory)
- May have memory or a model of the world's current state
- Do not consider the future consequences of their actions
- Consider how the world IS
- Can a reflex agent be rational?

[Demo: reflex optimal (L2D1)]

[Demo: reflex optimal (L2D2)]

Video of Demo Reflex Optimal

Video of Demo Reflex Odd

Planning Agents

Planning agents:

- Ask "what if"
- Decisions based on (hypothesized) consequences of actions
- Must have a model of how the world evolves in response to actions
- Must formulate a goal (test)
- Consider how the world WOULD BE

Optimal Planning

- Returns a least cost solution.
- Complete Planning
 - If there exists a solution it will find it.
- Planning vs. replanning
 - When might you want to replan?

Video of Demo Mastermind

Video of Demo Replanning

Search Problems

Search Problems

- A search problem consists of:
 - A state space

A successor function (with actions, costs)

- A start state and a goal test
- A solution is a sequence of actions (a plan) which transforms the start state to a goal state

Search Problems Are Models

Example: Traveling in Romania

- State space:
 - Cities
- Successor function:
 - Roads: Go to adjacent city with cost = distance
- Start state:
 - Arad
- Goal test:
 - Is state == Bucharest?
- Solution?

What's in a State Space?

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

- Problem: Pathing (go from location A to B)
 - States: (x,y) location
 - Actions: NSEW
 - Successor: update location only
 - Goal test: is (x,y)=END

- Problem: Eat-All-Dots
 - States: {(x,y), dot booleans}
 - Actions: NSEW
 - Successor: update location and possibly a dot boolean
 - Goal test: dots all false

State Space Sizes?

World state:

Agent positions: 120

■ Food count: 30

Ghost positions: 12

Agent facing: NSEW

How many

- World states?
 120x(2³⁰)x(12²)x4 (~74 trillion)
- States for pathing?120
- States for eat-all-dots?
 120x(2³⁰)

Quiz: Safe Passage

- Problem: eat all dots while keeping the ghosts perma-scared
- What does the state space have to specify?
 - (agent position, dot booleans, power pellet booleans, remaining scared time)

State Space Graphs and Search Trees

State Space Graphs

- State space graph: A mathematical representation of a search problem
 - Nodes are (abstracted) world configurations
 - Arcs represent successors (action results)
 - The goal test is a set of goal nodes (maybe only one)
- In a state space graph, each state occurs only once!
- We can rarely build this full graph in memory (it's too big), but it's a useful idea

State Space Graphs

- State space graph: A mathematical representation of a search problem
 - Nodes are (abstracted) world configurations
 - Arcs represent successors (action results)
 - The goal test is a set of goal nodes (maybe only one)
- In a search graph, each state occurs only once!
- We can rarely build this full graph in memory (it's too big), but it's a useful idea

Tiny state space graph for a tiny search problem

Search Trees

- - A "what if" tree of plans and their outcomes
 - The start state is the root node
 - Children correspond to successors
 - Nodes show states, but correspond to PLANS that achieve those states
 - For most problems, we can never actually build the whole tree

State Space Graphs vs. Search Trees

Each NODE in in the search tree is an entire PATH in the state space graph.

We construct both on demand – and we construct as little as possible.

Quiz: State Space Graphs vs. Search Trees

Consider this 4-state graph:

How big is its search tree (from S)?

What does the search tree look like?

Important: Lots of repeated structure in the search tree!

Tree Search

Search Example: Romania

Searching with a Search Tree

Search:

- Expand out potential plans (tree nodes)
- Maintain a fringe of partial plans under consideration
- Try to expand as few tree nodes as possible

General Tree Search

```
function TREE-SEARCH( problem, strategy) returns a solution, or failure initialize the search tree using the initial state of problem loop do

if there are no candidates for expansion then return failure choose a leaf node for expansion according to strategy

if the node contains a goal state then return the corresponding solution else expand the node and add the resulting nodes to the search tree end
```

- Important ideas:
 - Fringe
 - Expansion
 - Exploration strategy
- Main question: which fringe nodes to explore?

Example: Tree Search

Depth-First Search

Depth-First Search

Strategy: expand a deepest node first

Break ties alphabetically

Implementation: Fringe is a LIFO stack

Search Algorithm Properties

Search Algorithm Properties

- Complete: Guaranteed to find a solution if one exists?
- Optimal: Guaranteed to find the least cost path?
- Time complexity? $O(b^m)$
- Space complexity? $O(b \cdot m)$
- Cartoon of search tree:
 - b is the branching factor
 - m is the maximum depth
 - solutions at various depths

- Number of nodes in entire tree?
 - $1 + b + b^2 + b^m = O(b^m)$

Depth-First Search (DFS) Properties

What nodes DFS expand?

- Some left prefix of the tree.
- Could process the whole tree!
- If m is finite, takes time O(b^m)

• How much space does the fringe take?

Only has siblings on path to root, so O(bm)

Is it complete?

 m could be infinite, so only if we prevent cycles (more later)

Is it optimal?

 No, it finds the "leftmost" solution, regardless of depth or cost

Breadth-First Search

Breadth-First Search

Strategy: expand a shallowest node first

Implementation: Fringe

is a FIFO queue

Breadth-First Search (BFS) Properties

- What nodes does BFS expand?
 - Processes all nodes above shallowest solution
 - Let depth of shallowest solution be s
 - Search takes time O(b^s)
- How much space does the fringe take?
 - Has roughly the last tier, so O(b^s)
- Is it complete?
 - s must be finite if a solution exists, so yes!
- Is it optimal?
 - Only if costs are all 1 (more on costs later)

Iterative Deepening

- Idea: get DFS's space advantage with BFS's time / shallow-solution advantages
 - Run a DFS with depth limit 1. If no solution...
 - Run a DFS with depth limit 2. If no solution...
 - Run a DFS with depth limit 3.
- Isn't that wastefully redundant?
 - Generally most work happens in the lowest level searched, so not so bad!

Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions. It does not find the least-cost path. We will now cover a similar algorithm which does find the least-cost path.

Uniform Cost Search

Uniform Cost Search

Strategy: expand a cheapest node first:

Fringe is a priority queue (priority: cumulative cost)

Uniform Cost Search (UCS) Properties

- What nodes does UCS expand?
 - Processes all nodes with cost less than cheapest solution!
 - If that solution costs C^* and arcs cost at least ε , then the "effective depth" is roughly C^*/ε
 - Takes time $O(b^{C^*/\varepsilon})$ (exponential in effective depth)
- How much space does the fringe take?
 - Has roughly the last tier, so $O(b^{C^*/\varepsilon})$
- Is it complete?
 - Assuming best solution has a finite cost and minimum arc cost is positive, yes!
- Is it optimal?
 - Yes! (Proof via A*)

Uniform Cost Issues

The bad:

- Explores options in every "direction"
- No information about goal location

[Demo: empty grid UCS (L2D5)] [Demo: maze with deep/shallow water DFS/BFS/UCS (L2D7)]

Video of Demo Empty UCS

What algorithm is this equivalent to if all edge costs are 1?

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 1)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)

Graph Search

Tree Search: Extra Work!

Failure to detect repeated states can cause exponentially more work.

Graph Search

In BFS, for example, we shouldn't bother expanding the circled nodes (why?)

Graph Search

- Idea: never expand a state twice
- How to implement:
 - Tree search + set of expanded states ("closed set")
 - Expand the search tree node-by-node, but...
 - Before expanding a node, check to make sure its state has never been expanded before
 - If not new, skip it, if new add to closed set
- Important: store the closed set as a set, not a list
- Can graph search wreck completeness? Why/why not?
- How about optimality?

Tree Search Pseudo-Code

```
function Tree-Search(problem, fringe) return a solution, or failure
    fringe ← Insert(make-node(initial-state[problem]), fringe)
    loop do
        if fringe is empty then return failure
        node ← remove-front(fringe)
        if goal-test(problem, state[node]) then return node
        for child-node in expand(state[node], problem) do
            fringe ← insert(child-node, fringe)
        end
        end
end
```

Graph Search Pseudo-Code

```
function Graph-Search(problem, fringe) return a solution, or failure
   closed \leftarrow an empty set
   fringe \leftarrow Insert(Make-node(Initial-state[problem]), fringe)
   loop do
       if fringe is empty then return failure
       node \leftarrow \text{REMOVE-FRONT}(fringe)
       if GOAL-TEST(problem, STATE[node]) then return node
       if STATE [node] is not in closed then
          add STATE[node] to closed
          for child-node in EXPAND(STATE[node], problem) do
              if STATE[child-node] is not in closed then fringe \leftarrow INSERT(child-node, fringe)
          end
   end
```

Use this version for the homeworks, projects, and exams!

Some Hints for P1

- Implement your closed list (explored set) as a set!
- Nodes are conceptually paths, but better to represent with a state, cost, last action, and reference to the parent node.
- Pseudo code from Russell and Norvig book. Good example of how a child node is created from a parent node.

```
function Child-Node(problem, parent, action) returns a node
  return a node with
    State = problem.Result(parent.State, action),
    Parent = parent, Action = action,
    Path-Cost = parent.Path-Cost + problem.Step-Cost(parent.State, action)
```

The One Queue

- All these search algorithms are the same except for fringe strategies
 - Conceptually, all fringes are priority queues (i.e. collections of nodes with attached priorities)
 - Practically, for DFS and BFS, you can avoid the log(n) overhead from an actual priority queue, by using stacks and queues
 - Can even code one implementation that takes a variable queuing object

Informed Search

Search Heuristics

A heuristic is:

- A function that estimates how close a state is to a goal
- Designed for a particular search problem
- Examples: Manhattan distance, Euclidean distance for pathing

Example: Heuristic Function

Straight-line distanto Bucharest	ice
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

Greedy Search

Example: Heuristic Function

Straight-line distanto Bucharest	ice
Arad	366
Bucharest	0
Craiova	160
Dobreta	242
Eforie	161
Fagaras	178
Giurgiu	77
Hirsova	151
Iasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	98
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

Greedy Search

Expand the node that seems closest...

What can go wrong?

Greedy Search

- Strategy: expand a node that you think is closest to a goal state
 - Heuristic: estimate of distance to nearest goal for each state

- A common case:
 - Best-first takes you straight to the (wrong) goal

Worst-case: like a badly-guided DFS

[Demo: contours greedy empty (L3D1)]

[Demo: contours greedy pacman small maze (L3D4)]

Video of Demo Contours Greedy (Pacman Small Maze)

A* Search

A* Search

Combining UCS and Greedy

- Uniform-cost orders by path cost, or backward cost g(n)
- Greedy orders by goal proximity, or forward cost h(n)

• A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

When should A* terminate?

Should we stop when we enqueue a goal?

■ No: only stop when we dequeue a goal

Is A* Optimal?

- What went wrong?
- Actual bad goal cost < estimated good goal cost
- We need estimates to be less than actual costs!

Admissible Heuristics

Admissible Heuristics

A heuristic h is admissible (optimistic) if:

$$0 \le h(n) \le h^*(n)$$

where $h^*(n)$ is the true cost to a nearest goal

• Examples:

 Coming up with admissible heuristics is most of what's involved in using A* in practice.

Optimality of A* Tree Search

Optimality of A* Tree Search

Assume:

- A is an optimal goal node
- B is a suboptimal goal node
- h is admissible

Claim:

A will exit the fringe before B

Optimality of A* Tree Search: Blocking

Proof:

- Imagine B is on the fringe
- Some ancestor n, that is along the optimal path to A, is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)

$$f(n) = g(n) + h(n)$$

$$f(n) \le g(n) + h^*(n)$$

$$= g(A)$$

$$= f(A)$$

Definition of f-cost Admissibility of h h = 0 at a goal

Optimality of A* Tree Search: Blocking

Proof:

- Imagine B is on the fringe
- Some ancestor n, that is along the optimal path to A, is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)
 - 2. f(A) is less than f(B)

B is suboptimal

$$h = 0$$
 at a goal

Optimality of A* Tree Search: Blocking

Proof:

- Imagine B is on the fringe
- Some ancestor n, that is along the optimal path to A, is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)
 - 2. f(A) is less than f(B)
 - 3. *n* expands before B
- All ancestors along optimal path to A expand before B
- A expands before B
- A* search is optimal

$$f(n) \le f(A) < f(B)$$

Properties of A*

UCS vs A* Contours

 Uniform-cost expands equally in all "directions"

 A* expands mainly toward the goal, but does hedge its bets to ensure optimality

[Demo: contours UCS / greedy / A* empty (L3D1)]

[Demo: contours A* pacman small maze (L3D5)]

Video of Demo Contours (Empty) -- UCS

Video of Demo Contours (Empty) -- Greedy

Video of Demo Contours (Empty) – A*

Video of Demo Contours (Pacman Small Maze) – A*

Comparison

Greedy

Uniform Cost

A*

A* Applications

A* Applications

- Video games
- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition

• • •

[Demo: UCS / A* pacman tiny maze (L3D6,L3D7)] [Demo: guess algorithm Empty Shallow/Deep (L3D8)]

Creating Admissible Heuristics

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics
- Often, admissible heuristics are solutions to relaxed problems, where new actions are available

Inadmissible heuristics are often useful too

Example: 8 Puzzle

Start State

Goal State

- What are the states?
- How many states?
- What are the actions?
- How many successors from the start state?
- What should the costs be?

8 Puzzle I

- Heuristic: Number of tiles misplaced
- Why is it admissible?
- h(start) = 8
- This is a relaxed-problem heuristic

Start State

Goal State

	Average nodes expanded when the optimal path has				
	4 steps	8 steps	12 steps		
UCS	112	6,300	3.6 x 10 ⁶		
TILES	13	39	227		

8 Puzzle II

- What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?
- Total Manhattan distance

•
$$h(start) = 3 + 1 + 2 + ... = 18$$

Start S	State
---------	-------

Goal State

	Average nodes expanded when the optimal path has			
	4 steps	8 steps	12 steps	
TILES	13	39	227	
MANHATTAN	12	25	73	

Heuristics

- How about using the actual cost as a heuristic?
 - Would it be admissible?
 - Would we save on nodes expanded?
 - What's wrong with it?

- With A*: a trade-off between quality of estimate and work per node
 - As heuristics get closer to the true cost, you will expand fewer nodes but usually do more work per node to compute the heuristic itself

Graph Search Pseudo-Code

```
function Graph-Search(problem, fringe) return a solution, or failure
   closed \leftarrow an empty set
   fringe \leftarrow Insert(Make-node(Initial-state[problem]), fringe)
   loop do
       if fringe is empty then return failure
       node \leftarrow \text{REMOVE-FRONT}(fringe)
       if GOAL-TEST(problem, STATE[node]) then return node
       if STATE [node] is not in closed then
          add STATE[node] to closed
          for child-node in EXPAND(STATE[node], problem) do
              if STATE[child-node] is not in closed then fringe \leftarrow INSERT(child-node, fringe)
          end
   end
```

Use this version for the homeworks, projects, and exams!

A* Graph Search Gone Wrong?

State space graph

Search tree

C is already in closed set so not expanded again

Consistency of Heuristics

- Main idea: estimated heuristic costs ≤ actual costs
 - Admissibility: heuristic cost ≤ actual cost to goal
 h(A) ≤ actual cost from A to G
 - Consistency: heuristic "arc" cost ≤ actual cost for each arc

$$h(A) - h(C) \le cost(A \text{ to } C)$$

- Consequences of consistency:
 - The f value along a path never decreases

$$h(A) \le cost(A to C) + h(C)$$

A* graph search is optimal

Semi-Lattice of Heuristics

Trivial Heuristics, Dominance

■ Dominance: $h_a \ge h_c$ if

$$\forall n: h_a(n) \geq h_c(n)$$

- Heuristics form a semi-lattice:
 - Max of admissible heuristics is admissible

$$h(n) = \max(h_a(n), h_b(n))$$

- Trivial heuristics
 - Bottom of lattice is the zero heuristic (what does this give us?)
 - Top of lattice is the exact heuristic

Optimality of A* Graph Search

Optimality of A* Graph Search

- Sketch: consider what A* does with a consistent heuristic:
 - Fact 1: A* expands nodes in increasing total f value (f-contours)
 - Fact 2: For every state s, nodes that reach s optimally are expanded before nodes that reach s suboptimally
 - Result: A* graph search is optimal

Optimality

- Tree search:
 - A* is optimal if heuristic is admissible
 - UCS is a special case (h = 0)
- Graph search:
 - A* optimal if heuristic is consistent
 - UCS optimal (h = 0 is consistent)
- Consistency implies admissibility
- In general, most natural admissible heuristics tend to be consistent, especially if from relaxed problems

A*: Summary

A*: Summary

- A* uses both backward costs and (estimates of) forward costs
- A* is optimal with admissible / consistent heuristics
- Heuristic design is key: often use relaxed problems

