
Announcements

▪ Project 0: Python Tutorial
▪ Due Friday before midnight

▪ Homework 1
▪ Due Aug 29th before midnight

▪ Covers this lecture (we probably will take two days to cover it).

▪ You can start today!

▪ Look at the practice problems first if you’re stuck!

CS 4300/6300: Search

Informed Search

Instructor: Daniel Brown

University of Utah
[Based on slides created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley http://ai.berkeley.edu.]

Today

▪ Agents that Plan Ahead

▪ Search Problems

▪ Uninformed Search Methods

▪ Informed (heuristic) Search

Agents that Plan

Reflex Agents

▪ Reflex agents:
▪ Choose action based on current percept (and

maybe memory)

▪ May have memory or a model of the world’s
current state

▪ Do not consider the future consequences of
their actions

▪ Consider how the world IS

▪ Can a reflex agent be rational?

[Demo: reflex optimal (L2D1)]

[Demo: reflex optimal (L2D2)]

Video of Demo Reflex Optimal

Video of Demo Reflex Odd

Planning Agents

▪ Planning agents:
▪ Ask “what if”

▪ Decisions based on (hypothesized)
consequences of actions

▪ Must have a model of how the world evolves in
response to actions

▪ Must formulate a goal (test)

▪ Consider how the world WOULD BE

▪ Optimal Planning
▪ Returns a least cost solution.

▪ Complete Planning
▪ If there exists a solution it will find it.

▪ Planning vs. replanning
▪ When might you want to replan?

Video of Demo Mastermind

Video of Demo Replanning

Search Problems

Search Problems

▪ A search problem consists of:

▪ A state space

▪ A successor function
 (with actions, costs)

▪ A start state and a goal test

▪ A solution is a sequence of actions (a plan) which
transforms the start state to a goal state

“N”, 1.0

“E”, 1.0

Search Problems Are Models

Example: Traveling in Romania

▪ State space:
▪ Cities

▪ Successor function:
▪ Roads: Go to adjacent city with

cost = distance

▪ Start state:
▪ Arad

▪ Goal test:
▪ Is state == Bucharest?

▪ Solution?

What’s in a State Space?

▪ Problem: Pathing (go from location A to B)
▪ States: (x,y) location

▪ Actions: NSEW

▪ Successor: update location only

▪ Goal test: is (x,y)=END

▪ Problem: Eat-All-Dots
▪ States: {(x,y), dot booleans}

▪ Actions: NSEW

▪ Successor: update location
and possibly a dot boolean

▪ Goal test: dots all false

The world state includes every last detail of the environment

A search state keeps only the details needed for planning (abstraction)

State Space Sizes?

▪ World state:
▪ Agent positions: 120

▪ Food count: 30

▪ Ghost positions: 12

▪ Agent facing: NSEW

▪ How many
▪ World states?

 120x(230)x(122)x4 (~74 trillion)

▪ States for pathing?

 120

▪ States for eat-all-dots?

 120x(230)

Quiz: Safe Passage

▪ Problem: eat all dots while keeping the ghosts perma-scared

▪ What does the state space have to specify?

▪ (agent position, dot booleans, power pellet booleans, remaining scared time)

State Space Graphs and Search Trees

State Space Graphs

▪ State space graph: A mathematical
representation of a search problem
▪ Nodes are (abstracted) world configurations

▪ Arcs represent successors (action results)

▪ The goal test is a set of goal nodes (maybe only one)

▪ In a state space graph, each state occurs only
once!

▪ We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

State Space Graphs

▪ State space graph: A mathematical
representation of a search problem
▪ Nodes are (abstracted) world configurations

▪ Arcs represent successors (action results)

▪ The goal test is a set of goal nodes (maybe only one)

▪ In a search graph, each state occurs only once!

▪ We can rarely build this full graph in memory
(it’s too big), but it’s a useful idea

S

G

d

b

p
q

c

e

h

a

f

r

Tiny state space graph for a tiny
search problem

Search Trees

▪ A search tree:
▪ A “what if” tree of plans and their outcomes

▪ The start state is the root node

▪ Children correspond to successors

▪ Nodes show states, but correspond to PLANS that achieve those states

▪ For most problems, we can never actually build the whole tree

“E”, 1.0“N”, 1.0

This is now / start

Possible futures

State Space Graphs vs. Search Trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p
q

c

e

h

a

f

r

We construct both
on demand – and
we construct as
little as possible.

Each NODE in in
the search tree is
an entire PATH in
the state space

graph.

Search TreeState Space Graph

Quiz: State Space Graphs vs. Search Trees

S G

b

a

Consider this 4-state graph:

Important: Lots of repeated structure in the search tree!

How big is its search tree (from S)?

What does the search tree look like?

Tree Search

Search Example: Romania

Searching with a Search Tree

▪ Search:
▪ Expand out potential plans (tree nodes)

▪ Maintain a fringe of partial plans under consideration

▪ Try to expand as few tree nodes as possible

General Tree Search

▪ Important ideas:
▪ Fringe
▪ Expansion
▪ Exploration strategy

▪ Main question: which fringe nodes to explore?

Example: Tree Search

S

G

d

b

p
q

c

e

h

a

f

r

Depth-First Search

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p
q

c

e

h

a

f

r
q

p

h

fd

b

a

c

e

r

Strategy: expand a
deepest node first

Break ties
alphabetically

Implementation:
Fringe is a LIFO stack

Search Algorithm Properties

Search Algorithm Properties

▪ Complete: Guaranteed to find a solution if one exists?

▪ Optimal: Guaranteed to find the least cost path?

▪ Time complexity?

▪ Space complexity?

▪ Cartoon of search tree:
▪ b is the branching factor

▪ m is the maximum depth

▪ solutions at various depths

▪ Number of nodes in entire tree?
▪ 1 + b + b2 + …. bm = O(bm)

…
b

1 node

b nodes

b2 nodes

bm nodes

m tiers

𝑶(𝒃𝒎)

𝑶(𝒃 ⋅ 𝒎)

Depth-First Search (DFS) Properties

…
b

1 node

b nodes

b2 nodes

bm nodes

m tiers

▪ What nodes DFS expand?
▪ Some left prefix of the tree.

▪ Could process the whole tree!

▪ If m is finite, takes time O(bm)

▪ How much space does the fringe take?
▪ Only has siblings on path to root, so O(bm)

▪ Is it complete?
▪ m could be infinite, so only if we prevent

cycles (more later)

▪ Is it optimal?
▪ No, it finds the “leftmost” solution,

regardless of depth or cost

Breadth-First Search

Breadth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

Search

Tiers

Strategy: expand a
shallowest node first

Implementation: Fringe
is a FIFO queue

Breadth-First Search (BFS) Properties

▪ What nodes does BFS expand?
▪ Processes all nodes above shallowest solution

▪ Let depth of shallowest solution be s

▪ Search takes time O(bs)

▪ How much space does the fringe take?
▪ Has roughly the last tier, so O(bs)

▪ Is it complete?
▪ s must be finite if a solution exists, so yes!

▪ Is it optimal?
▪ Only if costs are all 1 (more on costs later)

…
b

1 node

b nodes

b2 nodes

bm nodes

s tiers

bs nodes

Iterative Deepening

…
b

▪ Idea: get DFS’s space advantage with BFS’s
time / shallow-solution advantages

▪ Run a DFS with depth limit 1. If no solution…

▪ Run a DFS with depth limit 2. If no solution…

▪ Run a DFS with depth limit 3. …..

▪ Isn’t that wastefully redundant?

▪ Generally most work happens in the lowest
level searched, so not so bad!

Cost-Sensitive Search

BFS finds the shortest path in terms of number of actions.
It does not find the least-cost path. We will now cover
a similar algorithm which does find the least-cost path.

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

2

4

4

15

1

3
2

2

Uniform Cost Search

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy: expand a

cheapest node first:

Fringe is a priority queue

(priority: cumulative cost)
S

G

d

b

p
q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8
2

15

1

2

Cost

contours

2

…

Uniform Cost Search (UCS) Properties

▪ What nodes does UCS expand?
▪ Processes all nodes with cost less than cheapest solution!

▪ If that solution costs C* and arcs cost at least  , then the
“effective depth” is roughly C*/

▪ Takes time O(bC*/) (exponential in effective depth)

▪ How much space does the fringe take?
▪ Has roughly the last tier, so O(bC*/)

▪ Is it complete?
▪ Assuming best solution has a finite cost and minimum arc cost

is positive, yes!

▪ Is it optimal?
▪ Yes! (Proof via A*)

b

C*/ “tiers”
c  3

c  2

c  1

Uniform Cost Issues

▪ The bad:
▪ Explores options in every “direction”
▪ No information about goal location

Start Goal

…

c  3

c  2

c  1

[Demo: empty grid UCS (L2D5)]

[Demo: maze with deep/shallow

water DFS/BFS/UCS (L2D7)]

Video of Demo Empty UCS

What algorithm is
this equivalent to if
all edge costs are 1?

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 1)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)

Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)

Graph Search

▪ Failure to detect repeated states can cause exponentially more work.

Search TreeState Graph

Tree Search: Extra Work!

Graph Search

▪ In BFS, for example, we shouldn’t bother expanding the circled nodes (why?)

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Graph Search

▪ Idea: never expand a state twice

▪ How to implement:

▪ Tree search + set of expanded states (“closed set”)

▪ Expand the search tree node-by-node, but…

▪ Before expanding a node, check to make sure its state has never been
expanded before

▪ If not new, skip it, if new add to closed set

▪ Important: store the closed set as a set, not a list

▪ Can graph search wreck completeness? Why/why not?

▪ How about optimality?

Tree Search Pseudo-Code

Graph Search Pseudo-Code

if STATE[child-node] is not in closed then

Use this version for the homeworks, projects, and exams!

Some Hints for P1

▪ Implement your closed list (explored set) as a set!

▪ Nodes are conceptually paths, but better to represent with a state,
cost, last action, and reference to the parent node.

▪ Pseudo code from Russell and Norvig book. Good example of how
a child node is created from a parent node.

The One Queue

▪ All these search algorithms are the
same except for fringe strategies

▪ Conceptually, all fringes are priority
queues (i.e. collections of nodes with
attached priorities)

▪ Practically, for DFS and BFS, you can
avoid the log(n) overhead from an
actual priority queue, by using stacks
and queues

▪ Can even code one implementation
that takes a variable queuing object

Informed Search

Search Heuristics

▪ A heuristic is:
▪ A function that estimates how close a state is to a goal

▪ Designed for a particular search problem

▪ Examples: Manhattan distance, Euclidean distance for
pathing

10

5

11.2

Example: Heuristic Function

h(x)

Greedy Search

Example: Heuristic Function

h(x)

Greedy Search

▪ Expand the node that seems closest…

▪ What can go wrong?

Greedy Search

▪ Strategy: expand a node that you think is
closest to a goal state
▪ Heuristic: estimate of distance to nearest goal for

each state

▪ A common case:
▪ Best-first takes you straight to the (wrong) goal

▪ Worst-case: like a badly-guided DFS

…
b

…
b

[Demo: contours greedy empty (L3D1)]
[Demo: contours greedy pacman small maze (L3D4)]

Video of Demo Contours Greedy (Pacman Small Maze)

A* Search

A* Search

UCS Greedy

A*

Combining UCS and Greedy

▪ Uniform-cost orders by path cost, or backward cost g(n)

▪ Greedy orders by goal proximity, or forward cost h(n)

▪ A* Search orders by the sum: f(n) = g(n) + h(n)

S a d

b

G

h=5

h=6

h=2

1

8

1

1

2

h=6
h=0

c

h=7

3

e h=1
1

Example: Teg Grenager

S

a

b

c

ed

dG

G

g = 0
h=6

g = 1
h=5

g = 2
h=6

g = 3
h=7

g = 4
h=2

g = 6
h=0

g = 9
h=1

g = 10
h=2

g = 12
h=0

When should A* terminate?

▪ Should we stop when we enqueue a goal?

▪ No: only stop when we dequeue a goal

S

B

A

G

2

3

2

2

h = 1

h = 2

h = 0h = 3

Is A* Optimal?

▪ What went wrong?

▪ Actual bad goal cost < estimated good goal cost

▪ We need estimates to be less than actual costs!

A

GS

1 3

h = 6

h = 0

5

h = 7

Admissible Heuristics

Admissible Heuristics

▪ A heuristic h is admissible (optimistic) if:

 where is the true cost to a nearest goal

▪ Examples:

▪ Coming up with admissible heuristics is most of what’s involved
in using A* in practice.

15

Optimality of A* Tree Search

Optimality of A* Tree Search

Assume:

▪ A is an optimal goal node

▪ B is a suboptimal goal node

▪ h is admissible

Claim:

▪ A will exit the fringe before B

…

Optimality of A* Tree Search: Blocking

Proof:

▪ Imagine B is on the fringe

▪ Some ancestor n, that is along the
optimal path to A, is on the fringe,
too (maybe A!)

▪ Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

Definition of f-cost

Admissibility of h

…

h = 0 at a goal
𝑓 𝑛 ≤ 𝑔 𝑛 + ℎ∗ 𝑛

 = 𝑔 𝐴
 = 𝑓 𝐴

Optimality of A* Tree Search: Blocking

Proof:

▪ Imagine B is on the fringe

▪ Some ancestor n, that is along the
optimal path to A, is on the fringe,
too (maybe A!)

▪ Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

2. f(A) is less than f(B)

B is suboptimal

h = 0 at a goal

…

Optimality of A* Tree Search: Blocking

Proof:

▪ Imagine B is on the fringe

▪ Some ancestor n, that is along the
optimal path to A, is on the fringe,
too (maybe A!)

▪ Claim: n will be expanded before B

1. f(n) is less or equal to f(A)

2. f(A) is less than f(B)

3. n expands before B

▪ All ancestors along optimal path to
A expand before B

▪ A expands before B

▪ A* search is optimal

…

Properties of A*

UCS vs A* Contours

▪ Uniform-cost expands equally in all
“directions”

▪ A* expands mainly toward the goal,
but does hedge its bets to ensure
optimality

Start Goal

Start Goal

[Demo: contours UCS / greedy / A* empty (L3D1)]
[Demo: contours A* pacman small maze (L3D5)]

Video of Demo Contours (Empty) -- UCS

Video of Demo Contours (Empty) -- Greedy

Video of Demo Contours (Empty) – A*

Video of Demo Contours (Pacman Small Maze) – A*

Comparison

Greedy Uniform Cost A*

A* Applications

A* Applications

▪ Video games

▪ Pathing / routing problems

▪ Resource planning problems

▪ Robot motion planning

▪ Language analysis

▪ Machine translation

▪ Speech recognition

▪ …

[Demo: UCS / A* pacman tiny maze (L3D6,L3D7)]
[Demo: guess algorithm Empty Shallow/Deep (L3D8)]

Creating Admissible Heuristics

▪ Most of the work in solving hard search problems optimally is in coming up
with admissible heuristics

▪ Often, admissible heuristics are solutions to relaxed problems, where new
actions are available

▪ Inadmissible heuristics are often useful too

15

366

Example: 8 Puzzle

▪ What are the states?

▪ How many states?

▪ What are the actions?

▪ How many successors from the start state?

▪ What should the costs be?

Start State Goal StateActions

8 Puzzle I

▪ Heuristic: Number of tiles misplaced

▪ Why is it admissible?

▪ h(start) =

▪ This is a relaxed-problem heuristic

8

Average nodes expanded
when the optimal path has…

…4 steps …8 steps …12 steps

UCS 112 6,300 3.6 x 106

TILES 13 39 227

Start State Goal State

Statistics from Andrew Moore

8 Puzzle II

▪ What if we had an easier 8-puzzle where
any tile could slide any direction at any
time, ignoring other tiles?

▪ Total Manhattan distance

▪ Why is it admissible?

▪ h(start) = 3 + 1 + 2 + … = 18
Average nodes expanded
when the optimal path has…

…4 steps …8 steps …12 steps

TILES 13 39 227

MANHATTAN 12 25 73

Start State Goal State

Heuristics

▪ How about using the actual cost as a heuristic?

▪ Would it be admissible?

▪ Would we save on nodes expanded?

▪ What’s wrong with it?

▪ With A*: a trade-off between quality of estimate and work per node

▪ As heuristics get closer to the true cost, you will expand fewer nodes but usually
do more work per node to compute the heuristic itself

Graph Search Pseudo-Code

if STATE[child-node] is not in closed then

Use this version for the homeworks, projects, and exams!

A* Graph Search Gone Wrong?

S

A

B

C

G

1

1

1

2
3

h=2

h=1

h=4

h=1

h=0

S (0+2)

A (1+4) B (1+1)

C (2+1)

G (5+0)

C (3+1)

G (6+0)

State space graph Search tree

C is already in closed set
so not expanded again

Consistency of Heuristics

▪ Main idea: estimated heuristic costs ≤ actual costs

▪ Admissibility: heuristic cost ≤ actual cost to goal

 h(A) ≤ actual cost from A to G

▪ Consistency: heuristic “arc” cost ≤ actual cost for each arc

 h(A) – h(C) ≤ cost(A to C)

▪ Consequences of consistency:

▪ The f value along a path never decreases

 h(A) ≤ cost(A to C) + h(C)

▪ A* graph search is optimal

3

A

C

G

h=4 h=1
1

h=2

Semi-Lattice of Heuristics

Trivial Heuristics, Dominance

▪ Dominance: ha ≥ hc if

▪ Heuristics form a semi-lattice:
▪ Max of admissible heuristics is admissible

▪ Trivial heuristics
▪ Bottom of lattice is the zero heuristic (what

does this give us?)

▪ Top of lattice is the exact heuristic

Optimality of A* Graph Search

Optimality of A* Graph Search

▪ Sketch: consider what A* does with a
consistent heuristic:

▪ Fact 1: A* expands nodes in increasing
total f value (f-contours)

▪ Fact 2: For every state s, nodes that reach
s optimally are expanded before nodes
that reach s suboptimally

▪ Result: A* graph search is optimal

…

f  3

f  2

f  1

Optimality

▪ Tree search:
▪ A* is optimal if heuristic is admissible
▪ UCS is a special case (h = 0)

▪ Graph search:
▪ A* optimal if heuristic is consistent
▪ UCS optimal (h = 0 is consistent)

▪ Consistency implies admissibility

▪ In general, most natural admissible heuristics
tend to be consistent, especially if from
relaxed problems

A*: Summary

A*: Summary

▪ A* uses both backward costs and (estimates of) forward costs

▪ A* is optimal with admissible / consistent heuristics

▪ Heuristic design is key: often use relaxed problems

	Slide 1: Announcements
	Slide 2: CS 4300/6300: Search
	Slide 3: Today
	Slide 4: Agents that Plan
	Slide 5: Reflex Agents
	Slide 6: Video of Demo Reflex Optimal
	Slide 7: Video of Demo Reflex Odd
	Slide 8: Planning Agents
	Slide 9: Video of Demo Mastermind
	Slide 10: Video of Demo Replanning
	Slide 11: Search Problems
	Slide 12: Search Problems
	Slide 13: Search Problems Are Models
	Slide 14: Example: Traveling in Romania
	Slide 15: What’s in a State Space?
	Slide 16: State Space Sizes?
	Slide 17: Quiz: Safe Passage
	Slide 18: State Space Graphs and Search Trees
	Slide 19: State Space Graphs
	Slide 20: State Space Graphs
	Slide 21: Search Trees
	Slide 22: State Space Graphs vs. Search Trees
	Slide 23: Quiz: State Space Graphs vs. Search Trees
	Slide 24: Tree Search
	Slide 25: Search Example: Romania
	Slide 26: Searching with a Search Tree
	Slide 27: General Tree Search
	Slide 28: Example: Tree Search
	Slide 29: Depth-First Search
	Slide 30: Depth-First Search
	Slide 31: Search Algorithm Properties
	Slide 32: Search Algorithm Properties
	Slide 33: Depth-First Search (DFS) Properties
	Slide 34: Breadth-First Search
	Slide 35: Breadth-First Search
	Slide 36: Breadth-First Search (BFS) Properties
	Slide 37: Iterative Deepening
	Slide 38: Cost-Sensitive Search
	Slide 39: Uniform Cost Search
	Slide 40: Uniform Cost Search
	Slide 41: Uniform Cost Search (UCS) Properties
	Slide 42: Uniform Cost Issues
	Slide 43: Video of Demo Empty UCS
	Slide 44: Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 1)
	Slide 45: Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 2)
	Slide 46: Video of Demo Maze with Deep/Shallow Water --- DFS, BFS, or UCS? (part 3)
	Slide 47: Graph Search
	Slide 48: Tree Search: Extra Work!
	Slide 49: Graph Search
	Slide 50: Graph Search
	Slide 51: Tree Search Pseudo-Code
	Slide 53: Graph Search Pseudo-Code
	Slide 54: Some Hints for P1
	Slide 55: The One Queue
	Slide 56: Informed Search
	Slide 57: Search Heuristics
	Slide 58: Example: Heuristic Function
	Slide 59: Greedy Search
	Slide 60: Example: Heuristic Function
	Slide 61: Greedy Search
	Slide 62: Greedy Search
	Slide 64: Video of Demo Contours Greedy (Pacman Small Maze)
	Slide 65: A* Search
	Slide 66: A* Search
	Slide 67: Combining UCS and Greedy
	Slide 68: When should A* terminate?
	Slide 69: Is A* Optimal?
	Slide 70: Admissible Heuristics
	Slide 72: Admissible Heuristics
	Slide 73: Optimality of A* Tree Search
	Slide 74: Optimality of A* Tree Search
	Slide 76: Optimality of A* Tree Search: Blocking
	Slide 77: Optimality of A* Tree Search: Blocking
	Slide 78: Optimality of A* Tree Search: Blocking
	Slide 79: Properties of A*
	Slide 81: UCS vs A* Contours
	Slide 82: Video of Demo Contours (Empty) -- UCS
	Slide 83: Video of Demo Contours (Empty) -- Greedy
	Slide 84: Video of Demo Contours (Empty) – A*
	Slide 85: Video of Demo Contours (Pacman Small Maze) – A*
	Slide 86: Comparison
	Slide 87: A* Applications
	Slide 88: A* Applications
	Slide 92: Creating Admissible Heuristics
	Slide 93: Example: 8 Puzzle
	Slide 94: 8 Puzzle I
	Slide 95: 8 Puzzle II
	Slide 96: Heuristics
	Slide 97: Graph Search Pseudo-Code
	Slide 98: A* Graph Search Gone Wrong?
	Slide 99: Consistency of Heuristics
	Slide 100: Semi-Lattice of Heuristics
	Slide 101: Trivial Heuristics, Dominance
	Slide 102: Optimality of A* Graph Search
	Slide 103: Optimality of A* Graph Search
	Slide 104: Optimality
	Slide 105: A*: Summary
	Slide 106: A*: Summary

