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Decision Networks

▪ Maximize Expected Utility
▪  choose the action which maximizes the expected utility given the evidence

Weather

Forecast

Umbrella

U

▪ Can directly operationalize this with 
decision networks

▪ Bayes nets with nodes for utility and 
actions

▪ Lets us calculate the expected utility for 
each action

▪ New node types:

▪ Chance nodes (just like BNs)

▪ Actions (rectangles, cannot have parents, 
act as observed evidence)

▪ Utility node (diamond, depends on action 
and chance nodes)



Decision Networks

Weather

Forecast

Umbrella

U

▪ Action selection

▪ Instantiate all evidence

▪ Set action node(s) each 
possible way

▪ Calculate posterior for all 
parents of utility node, given 
the evidence

▪ Calculate expected utility for 
each action

▪ Choose maximizing action



Decision Networks

Weather

Umbrella

U

W P(W)

sun 0.7

rain 0.3

Umbrella = leave

Umbrella = take

Optimal decision = leave

A W U(A,W)

leave sun 100

leave rain 0

take sun 20

take rain 70



Example: Decision Networks

Weather

Forecast
=bad

Umbrella

U

A W U(A,W)

leave sun 100

leave rain 0

take sun 20

take rain 70

W P(W|F=bad)

sun 0.34

rain 0.66

Umbrella = leave

Umbrella = take

Optimal decision = take



Decisions as Outcome Trees

U(t,s)

W | {b} W | {b}

U(t,r) U(l,s) U(l,r)

{b}

Weather

Forecast
=bad

Umbrella

U

Decision diagram tells us what numbers to put in our 

expectimax tree!



Value of Information



Value of Perfect Information (VPI)

▪ Idea: compute value of acquiring evidence
▪ Can be done directly from decision network

▪ Example: buying oil drilling rights
▪ Two blocks A and B, exactly one has oil, worth k
▪ You can drill in one location
▪ Prior probabilities 0.5 each, & mutually exclusive
▪ Drilling in either A or B has EU = k/2, MEU = k/2

▪ Question: what’s the value of information of O?
▪ Value of knowing which of A or B has oil
▪ Value is expected gain in MEU from new info
▪ Survey may say “oil in a” or “oil in b,” prob 0.5 each
▪ If we know OilLoc, MEU is k (either way)
▪ Gain in MEU from knowing OilLoc?
▪ VPI(OilLoc) = k/2
▪ Fair price of information: k/2
 

OilLoc

DrillLoc

U

D O U

a a k

a b 0

b a 0

b b k

O P

a 1/2

b 1/2



VPI Example: Weather

Weather

Forecast

Umbrella

U

A W U

leave sun 100

leave rain 0

take sun 20

take rain 70

MEU with no evidence

MEU if forecast is bad

MEU if forecast is good

F P(F)

good 0.59

bad 0.41

Forecast distribution



Value of Information

▪ Assume we have evidence E=e.  Value if we act now:

▪ Assume we see that E’ = e’.  Value if we act then:

▪ BUT E’ is a random variable whose value is
 unknown, so we don’t know what e’ will be

▪ Expected value if E’ is revealed and then we act:

▪ Value of information: how much MEU goes up
 by revealing E’ first then acting, over acting now:

P(s | +e)

{+e}
a

U

{+e, +e’}
a

P(s | +e, +e’)

U

{+e}

P(+e’ | +e)
{+e, +e’}

P(-e’ | +e)
{+e, -e’}

a



VPI Properties

▪ Nonnegative

▪ Nonadditive 
(think of observing Ej twice)

▪ Order-independent



Quick VPI Questions

▪ The soup of the day is either clam 
chowder or split pea, but you wouldn’t 
order either one.  What’s the value of 
knowing which it is?

▪ There are two kinds of plastic forks at a 
picnic.  One kind is slightly sturdier.  
What’s the value of knowing which?

▪ You’re playing the lottery.  The prize will 
be $0 or $100.  You can play any number 
between 1 and 100 (chance of winning is 
1%).  What is the value of knowing the 
winning number?

0

>0

100-1

=99



VPI Quiz

▪ VPI(OilLoc) ?

▪ VPI(ScoutingReport) ?

▪ VPI(Scout) ?

▪ VPI(Scout | ScoutingReport) ?

▪ Generally: 
If          Parents(U)        Z   |   CurrentEvidence

Then    VPI( Z | CurrentEvidence) = 0 

OilLoc

DrillLoc

U

Scouting
Report

Scout>0

k/2

0

>0



POMDP Teaser



POMDPs

▪ MDPs have:
▪ States S
▪ Actions A
▪ Transition function P(s’|s,a) (or T(s,a,s’))
▪ Rewards R(s,a,s’)

▪ POMDPs add:
▪ Observations O

▪ Observation function P(o|s) (or O(s,o))

▪ POMDPs are MDPs over belief

 states b (distributions over S)

A popular and practical way to deal with partial 
observability is with an RNN!

a

s

s, a

s,a,s’

s’

a

b

b, a

o

b’



How would we write an MDP as a Bayes’ Net?

28



Markov Models: Bayes’ Nets + Time



Reasoning over Time or Space

▪ Often, we want to reason about a sequence of observations

▪ Speech recognition

▪ Robot localization

▪ User attention

▪ Medical monitoring

▪ Need to introduce time (or space) into our models



Markov Models

▪ Value of X at a given time is called the state

▪ Parameters: called transition probabilities or dynamics, specify how the state 
evolves over time (also, initial state probabilities)

▪ Stationarity assumption: transition probabilities the same at all times

▪ Same as MDP transition model, but no choice of action

X2X1 X3 X4



Joint Distribution of a Markov Model

▪ Joint distribution:

▪ More generally:

X2X1 X3 X4



Implied Conditional Independencies

▪ Bayes’ net implies                                  and

▪ Do we also have     ?

▪ Yes! 

▪ D-Separation

X2X1 X3 X4



Markov Models Recap

▪ Explicit assumption for all   t :

▪ Consequence, joint distribution can be written as: 

▪ Implied conditional independencies:

▪ Past variables independent of future variables given the present

i.e., if                     or                      then:

▪ Additional explicit assumption:                         is the same for all t

Huge savings in number 

of parameters needed!



Example Markov Chain: Weather

▪ States: X = {rain, sun}

rain sun

0.9

0.7

0.3

0.1

Two new ways of representing the same CPT

sun

rain

sun

rain

0.1

0.9

0.7

0.3

Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9

sun rain 0.1

rain sun 0.3

rain rain 0.7

▪ Initial distribution: 1.0 sun

▪ CPT P(Xt | Xt-1):



Example Markov Chain: Weather

▪ Initial distribution: 1.0 sun

▪ What is the probability distribution after one step?

rain sun

0.9

0.7

0.3

0.1



Mini-Forward Algorithm

▪ Question: What’s P(X) on some day t?

Forward simulation

X2X1 X3 X4



Example Run of Mini-Forward Algorithm

▪ From initial observation of sun

 

▪ From initial observation of rain

▪ From yet another initial distribution P(X1):

P(X1) P(X2) P(X3) P(X)P(X4)

P(X1) P(X2) P(X3) P(X)P(X4)

P(X1) P(X)

…

rain sun

0.9

0.7

0.3

0.1



▪ Stationary distribution:
▪ The distribution we end up with is called 

the stationary distribution   of the 
chain

▪ It satisfies

Stationary Distributions

▪ For most chains:
▪ Influence of the initial distribution 

gets less and less over time.

▪ The distribution we end up in is 
independent of the initial distribution



Practice: Stationary Distributions

▪ Question: What’s P(X) at time t = infinity?

X2X1 X3 X4

Xt-1 Xt P(Xt|Xt-1)

sun sun 0.9

sun rain 0.1

rain sun 0.3

rain rain 0.7

Also:



Is this useful? Can this make you money?
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Application of Stationary Distribution: Web Link Analysis

▪ PageRank over a web graph
▪ Each web page is a state

▪ Initial distribution: uniform over pages

▪ Transitions:

▪ With prob. c, uniform jump to a
 random page (dotted lines, not all shown)
▪ With prob. 1-c, follow a random
 outlink (solid lines)

▪ Stationary distribution
▪ Will spend more time on highly reachable pages
▪ E.g. many ways to get to the Acrobat Reader download page
▪ Somewhat robust to link spam
▪ Google 1.0 returned the set of pages containing all your 

keywords in decreasing rank, now all search engines use link 
analysis along with many other factors (rank actually getting 
less important over time). 

▪ User behavior is now very important (what people click on)



Application of Stationary Distributions: Gibbs Sampling

▪ Each joint instantiation over all hidden and query 
variables is a state: {X1, …, Xn} = H U Q

▪ Transitions:
▪ With probability 1/n resample variable Xj according to 

 P(Xj | x1, x2, …, xj-1, xj+1, …, xn, e1, …, em)

▪ Stationary distribution:
▪ Conditional distribution P(X1, X2 , … , Xn|e1, …, em)

▪ Means that when running Gibbs sampling long enough 
we get a sample from the desired distribution

▪ Requires some proof to show this is true!



Next Time: Hidden Markov Models!
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