CS 6300: Artificial Intelligence

Decision Networks and Value of Perfect Information

Instructor: Daniel Brown

University of Utah

[Based on slides created by Dan Klein and Pieter Abbeel http://ai.berkeley.edu.]
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Decision Networks

=  Maximize Expected Utility
= choose the action which maximizes the expected utility given the evidence

= Can directly operationalize this with
decision networks

= Bayes nets with nodes for utility and Umbrella
actions

= Lets us calculate the expected utility for
each action

= New node types:

O = Chance nodes (just like BNs)

= Actions (rectangles, cannot have parents,
act as observed evidence)

<> = Utility node (diamond, depends on action @

and chance nodes)




Decision Networks

= Action selection

Instantiate all evidence

Set action node(s) each
possible way

Calculate posterior for all
parents of utility node, given
the evidence

Calculate expected utility for
each action

Choose maximizing action

Umbrella

Weather




Decision Networks

Umbrella = leave

Umbrella

EU(leave) = Z P(w)U (leave, w)

=0.7-100+0.3-0="70

Umbrella = take

EU(take) = Z P(w)U (take, w)

A W U(A,W)
—0.7-20 4+ 0.3 - 70 = 35 W P(W) leave sun 100
sun 0.7 leave rain 0
rain 0.3 take sun 20
Optimal decision = leave .
take rain 70

MEU(¢) = max EU(a) = 70



Example: Decision Networks

Umbrella = leave A W UAW)
Umbrella leave sun 100
EU(leave|bad) = Z P(w|bad)U (leave, w) leave | rain 0
v take sun 20
—0.34-100+0.66-0 =34 take | rain 70

Umbrella = take Q(\b

Weather

EU(take|bad) = Z P(w|bad)U (take, w) W | P(W]|F=bad)
w sun 0.34
= 0.34-20+0.66 - 70 = 53 rain 0.66
\W) §

Optimal decision = take (9(

MEU(F = bad) = max EU(a|bad) = 53

Forecast
=bad




Umbrella

Decisions as OQutcome Trees

{b}

Decision diagram tells us what numbers to put in our
expectimax tree!



Value of Information




Value of Perfect Information (VPI)

J\A\\)\’\

ldea: compute value of acquiring evidence D
= Can be done directly from decision network

@)

DrillLoc a

Example: buying oil drilling rights

(0] P
= Two blocks A and B, exactly one has oil, worth k @ b
= You can drill in one location a | 1/2 b|b

= Prior probabilities 0.5 each, & mutually exclusive
= Drilling in either A or B has EU = k/2, MEU = k/2

Q

Q
o | o
~|lOoO|lOo | x| C

Question: what’ s the value of information of O? \4,
= Value of knowing which of A or B has oil \4 o
= Value is expected gain in MEU from new info
= Survey maysay oilina” or “oilin b,” prob 0.5 each
= |f we know QilLoc, MEU is k (either way)

= @Gain in MEU from knowing OilLoc?
= VPI(OilLoc) = k/2
= Fair price of information: k/2




VPl Example: Weather

MEU with no evidence Umbrella

MEU(¢) = max EU(a) = 70

MEU if forecast is bad

MEU(F = bad) = max EU(a|bad) = 53

MEU if forecast is good
MEU(F = good) = max EU(a|good) = 95

Forecast distribution

F P(F)

good | 0.59 |:> 0.99 - (95) + 0.41 - (53) — 70
bad 0.41 77.8 L 70 — 78

VPI(E'|e) = (Z P(e'|e)MEU(e, e’)) — MEU(e)

€



Value of Information

Assume we have evidence E=e. Value if we act now:

MEU(e) = m{?xz P(sle) U(s,a)

Assume we see that E' =e’. Value if we act then:

N /
MEU(e,e’) = mgx; P(sle,e’) U(s,a)

BUT E’ is a random variable whose value is
unknown, so we don’ t know what e’ will be

Expected value if E” is revealed and then we act:

MEU(e, E') = Z P(e'le)MEU(e, e)

Value of information: how much MEU goes up
by revealing E’ first then acting, over acting now:

VPI(E'|e) = MEU(e, E') — MEU(e)

{+e}

P(s | +e)
U

{+e, +e}
d

P(s | +e, +e’)




VPI Properties

= Nonnegative

VE' e : VPI(E'|le) >0

= Nonadditive
(think of observing E; twice)

" Order-independent

VPI(Ej, Ek|€) — VPI(Ejle) + VPI(Ek‘e, Ej) @ % |
WG
= VPI(E|e) + VPI(Ejle, Ey,) =



Quick VPI Questions

= The soup of the day is either clam
chowder or split pea, but you wouldn’ t
order either one. What’ s the value of
knowing which it is?

= There are two kinds of plastic forks at a
picnic. One kind is slightly sturdier.
What' s the value of knowing which?

= You re playing the lottery. The prize will
be SO or $100. You can play any number
between 1 and 100 (chance of winning is
1%). What is the value of knowing the
winning number?

100-1




VPI Quiz

-k

VPI(QOilLoc) ? k/2
VPI(ScoutingReport) ? >()
VPI(Scout) ? 0

VPI(Scout | ScoutingReport) ?

>0

Generally:

If Parents(U) Z | CurrentEvidence
Then VPI(Z | CurrentEvidence) =0

—

~—

DrillLoc







2l O pPOMDPs

= MDPs have: ggl /SZ g ’ %

—
= States S =

= Actions A "
= Transition function P(s’ |s,a) (or T(s,a,s’))
= Rewards R(s,a,s’ )

= POMDPs add:

= QObservations O ’
= QObservation function P(o|s) (or O(s,0)) o

= POMDPs are MDPs over belief
states b (distributions over S)

A popular and practical way to deal with partial
observability is with an RNN!



How would we write an MDP as a Bayes’ Net?

~

(2 S .&3

o o]

2
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Markov Models: Bayes’ Nets + Time

L R A TR



Reasoning over Time or Space

= Often, we want to reason about a sequence of observations
= Speech recognition
= Robot localization
= User attention

= Medical monitoring

= Need to introduce time (or space) into our models



Markov Models

= Value of X at a given time is called the state

Q=@ -+

P(X1) P(Xt|X¢—1)
)

»= Parameters: called transition probabilities or dynamics, specify how the state
evolves over time (also, initial state probabilities)

= Stationarity assumption: transition probabilities the same at all times
= Same as MDP transition model, but no choice of action



Joint Distribution of a Markov Model

P(X1)  P(XyX¢—1)
= Joint distribution:
P(Xl,XQ,Xg,X4) — P(Xl)P(XQ\Xl)P(Xg\XQ)P(X4\X3)

= More generally:
P(X1,Xs,...,X7)=P(X1)P(X2|X1)P(X35|X2)... P(X7|X71_1)

= P(X1) | | P(X¢| Xi—1)



Implied Conditional Independencies

-G

= Bayes netimplies X3 1 X; X, and X, 1l X, X, | X5

" Dowealsohave X7 1 X3,X4 | Xy 7

= Yes!

= D-Separation



Markov Models Recap

Explicit assumption for all t: Xe 1L X9, 0, Xy o | X4q
Consequence, joint distribution can be written as:
P(X1,Xs,...,X71) = P(X1)P(X3|X1)P(X35|X3) ... P(X7| X7_1)

T
= P(X;) H P(X¢| X:—1) Huge savings in number

PR of parameters needed!

Implied conditional independencies:
= Past variables independent of future variables given the present
i.e., if 1 <tg <tz OF t1 >ty > 13 then: th J_L Xt3 ‘ Xt2

Additional explicit assumption: p(Xx, | X,_;) isthe same forallt



Example Markov Chain: Weather

@

= States: X ={rain, sun}

= |nitial distribution: 1.0 sun

= CPT P(X, | X,.,): Two new ways of representing the same CPT

Xe | X | PX[X.y)

0.9
0.3
sun | sun 0.9 sun : sun
u u
sun | rain 0.1 @ @ v
0.7

rain | sun 0.3

rain

rain | rain 0.7

0.1



Example Markov Chain: Weather

= |nitial distribution: 1.0 sun 0.3 0-9
)R @
Gl
0.7
0.1

" What is the probability distribution after one step?

{

P(X> =sun) =

—

+ 0.3-0.0=0.9



Mini-Forward Algorithm

= Question: What’s P(X) on some day t?

(O~

P(xq1) = known

P(:z:t) = Z P(xy_q,x¢)

Tt—1




Example Run of Mini-Forward Algorithm

" From initial observation of sun

(50) (51) (5e) (Gios ) meme( 535 )

P(X)) P(X)) _P(Xy) P(Xy) P(X,)

" From initial observation of rain

(10) (o7) {052 {oara)=>{ozs)

P(X)) P(X;) P(X3) P(X}) P(X,)
* From yet another initial distribution P(X,):

(7). = (072 )

P(X)) P(X,)



Stationary Distributions

" For most chains: = Stationary distribution:
* |Influence of the initial distribution " The distribution we end up with is called
gets less and less over time. the stationary distribution P__of the
* The distribution we end up in is chain
independent of the initial distribution " |t satisfies

Poo(X) = Pocy1(X) = ZP(X’x)Pw(x)

006




Practice: Stationary Distributions

"= Question: What’s P(X) at time t = infinity?

O-O-D@ -

(sun) = P(sun|sun)Ps (sun) + P(sun|rain)Ps (rain)

Py (rain) = P(rain|sun)Ps (sun) + P(rain|rain) Py (rain) \

Pec(sun) = 0.9Ps (sun) +0.3Px (rain) 2 Qe S AT

Py (rain) = 0.1 P (sun) + O.7Poo(raz7%} C\() sun | sun | 0.9
Py (sun) = 3Py (rain) \ - \’\ Q;su\ sun | rain 0.1

Py (rain) = 1/3Ps (sun)

\ - E Py (sun) = 3/4 rain | rain | 0.7
Also: P (S’U,TL) + P (rain) — 1 Poo (TG/L.’TL) = ]_/4




s this useful? Can this make you money?

44






Application of Stationary Distribution: Web Link Analysis

= PageRank over a web graph
= Each web page is a state P

= |nitial distribution: uniform over pages

" Transitions:

= With prob. ¢, uniform jump to a

random page (dotted lines, not all shown)
= With prob. 1-c, follow a random

outlink (solid lines)

= Stationary distribution
= Will spend more time on highly reachable pages
= E.g. many ways to get to the Acrobat Reader download page
= Somewhat robust to link spam

= Google 1.0 returned the set of pages containing all your
keywords in decreasing rank, now all search engines use link
analysis along with many other factors (rank actually getting
less important over time).

= User behavior is now very important (what people click on)




Application of Stationary Distributions: Gibbs Sampling

= Each joint instantiation over all hidden and query
variables is a state: {X,, ..., X }=H U Q

= Transitions:
= With probability 1/n resample variable X; according to

POX; | X, Xps o0 X4 Xiu1s oes Xy €1 oo €)
= Stationary distribution:
= Conditional distribution P(X, X, , ..., X, |e; ... e_)

= Means that when running Gibbs sampling long enough
we get a sample from the desired distribution

= Requires some proof to show this is true!



Next Time: Hidden Markov Models!
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